Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ax^3+bx^2+c⋮x+2\)
\(\Rightarrow x=-2\) là nghiệm của pt \(ax^3+bx^2+c=0\)
\(\Rightarrow8a-4b-c=0\)
\(ax^3+bx^2+c\) chia \(x^2-1\) dư x+5
\(\Rightarrow ax^3+bx^2+c-x-5=0\)
\(\Leftrightarrow x=\pm1\)\(\Rightarrow\begin{cases}a+b+c=6\\-a+b+c=4\end{cases}\)
Ta có hpt \(\begin{cases}8a-4b-c=0\\a+b+c=6\\-a+b+c=4\end{cases}\)\(\Leftrightarrow\begin{cases}a=b=1\\c=4\end{cases}\)
\(A=x^3+y^3+z^3+kxyz\)
Thực hiện phép chia ta được
\(A=\left(x^3+y^3+z^3+kxyz\right)\div\left(x+y+z\right)\)
\(A=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-xz-yz-yz\left(k+2\right)\right]-yz\left(x+z\right)\left(k+3\right)\)
Để phép chia hết thì: \(yz\left(x+z\right)\left(k+3\right)=0\)
Suy ra: \(k+3=0\)
Suy ra: \(k=3\)
Dễ thấy x=0 không là nghiệm của phương trình.
Xét x khác 0, chia cả 2 vế của phương trình cho \(x^2\ne0\) ta có:
\(x^2+\text{ax}+b+\dfrac{a}{x}+\dfrac{1}{x^2}=0\)
<=> \(\left(x^2+\dfrac{1}{x^2}\right)+a\left(x+\dfrac{1}{x}\right)+b=0\)
<=>\(\left(x+\dfrac{1}{x}\right)^2-2+a\left(a+\dfrac{1}{x}\right)+b=0\)(*)
Đặt \(y=x+\dfrac{1}{x}\)
Ta có: \(y^2-4=\left(x+\dfrac{1}{x}\right)^2-4=x^2+2.x.\dfrac{1}{x}+\dfrac{1}{x^2}-4.x.\dfrac{1}{x}\)
=\(x^2-2.x.\dfrac{1}{x}+\dfrac{1}{x^2}=\left(x-\dfrac{1}{x}\right)^2\ge0\) với mọi x khác 0
=>\(y^2\ge4\)
=>\(\left|y\right|\ge2\)
(*) trở thành: y2-2+ay+b=0
<=>\(2-y^2=ay+b\)
=>\(\left|2-y^2\right|=\left|ay+b\right|\)(1)
Ta có: \(0\le\left(a-by\right)^2\) (với mọi \(a\ne0\) , b, \(\left|y\right|\ge2\))
<=>\(0\le a^2-2aby+b^2y^2\)
<=>\(a^2y^2+2aby+b^2\le a^2y^2+a^2+b^2y^2+b^2\)
<=>\(\left(ay+b\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)
<=>\(\left|ay+b\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)(2)
Từ (1) và (2) => \(\left|2-y^2\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)
<=>\(\left(2-y^2\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)
<=>\(\left(a^2+b^2\right)^2\ge\dfrac{\left(2-y^2\right)^2}{y^2+1}\)(3) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))
Vì \(y^2\ge4\)
=> \(y^2-\dfrac{12}{5}\ge4-\dfrac{12}{5}=\dfrac{8}{5}\) > 0
=> \(\left(y^2-\dfrac{12}{5}\right)^2\ge\left(\dfrac{8}{5}\right)^2\)
<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{144}{25}\ge\dfrac{64}{25}\)
<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{16}{5}\ge0\)
<=>\(5y^4-24y^2+16\ge0\)
<=>\(20-20y^2+5y^4\ge4y^2+4\)
<=>\(5\left(4-4y^2+y^4\right)\ge4\left(y^2+1\right)\)
<=>\(5\left(2-y^2\right)^2\ge4\left(y^2+1\right)\)
<=>\(\dfrac{\left(2-y^2\right)^2}{y^2+1}\ge\dfrac{4}{5}\) (4) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))
Từ (3) và (4)=> \(a^2+b^2\ge\dfrac{4}{5}\)
Vậy giá trị nhỏ nhất của a2+b2 là \(\dfrac{4}{5}\) khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|y\right|=2\\a=by\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\\a=by\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\a=2b\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\a=-2b\end{matrix}\right.\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\a=-\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\end{matrix}\right.\)(I)
Vì a > 0 nên trường hợp thứ nhất loại.
Do đó:\(\left(I\right)\)<=>\(\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\)
Khi đó giá trị của a cần tìm là \(\dfrac{4}{5}.\)
Giải:
Từ \(\left(P\right)\) và \(\left(d\right)\) ta có:
\(x^2=mx-m+1\)
\(\Leftrightarrow-x^2+mx-m+1=0\)
\(\Leftrightarrow\Delta=m^2-4m+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+\sqrt{m^2-4m+1}}{-2}\\x_2=\dfrac{-m-\sqrt{m^2-4m+1}}{-2}\end{matrix}\right.\)
Mà \(x_1=2x_2\)
\(\Leftrightarrow\dfrac{-m+\sqrt{m^2-4m+1}}{-2}=\dfrac{-2m-2\sqrt{m^2-4m+1}}{-2}\)
Rút gọn đẳng thức trên ta thu được:
\(3\sqrt{m^2-4m+1}+m=0\)
Chuyển \(m\) sang vế phải và bình phương cả hai vế ta thu được:
\(9m^2-36m+9=m^2\)
\(\Leftrightarrow8m^2-36m+9=0\)
Giải phương trình ta thu được 2 nghiệm của \(m\)
Vậy \(m\) có hai phần tử
\(\sqrt{10-2\sqrt{21}}=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
=\(\sqrt{7}-\sqrt{3}\)
=> a=7 và b=3
=> a-b=7-3=4
\(\sqrt{10-2\sqrt{21}}=\sqrt{7}-\sqrt{3}\)
\(\Rightarrow\sqrt{7}-\sqrt{3}=\sqrt{a}-\sqrt{b}\)
Suy ra \(\sqrt{7}=\sqrt{a}\rightarrow a=7\)
\(\sqrt{3}=\sqrt{3}\rightarrow b=3\)
Vậy \(a-b=7-3=4\)
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
=\(\sqrt{11}-\sqrt{5}\)
=> a=11 và b=5
=> a-b=6
ta có : \(\sqrt{55-6\sqrt{6}}=\sqrt{55-2\sqrt{54}}\)
= \(\sqrt{54-2\sqrt{54.1}+1}=\sqrt{\left(\sqrt{54}-1\right)^2}\)
=\(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)
=>a=-1 và b=3
=> a-b=-1-3=-4
Ta có:
\(x^4+4=\left(x^4+4x^2+4\right)-4x^2\)
=\(\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
=> \(x^4+4\) chia hết cho \(x^2+2x+a\) khi \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)⋮\left(x^2+2x+a\right)\)
=> a = 2.