K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

478787

6 tháng 1 2017

478787 nhé bạn

AH
Akai Haruma
Giáo viên
14 tháng 11 2017

Lời giải:

Áp dụng BĐT AM-GM cho các số không âm \(x^2,y^2,z^2,t^2\) ta có:

\(\left\{\begin{matrix} x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy\\ y^2+z^2\geq 2|yz|\geq 2yz\\ z^2+t^2\geq 2|zt|\geq 2zt\\ t^2+x^2\geq 2|tx|\geq 2tx\end{matrix}\right.\)

\(\Rightarrow 2(x^2+y^2+z^2+t^2)\geq 2(xy+yz+zt+tx)\)

\(\Leftrightarrow x^2+y^2+z^2+t^2\geq xy+yz+zt+tx\)

Dấu bằng xảy ra (vì \(x^2+y^2+z^2+t^2=1=xy+yz+zt+tx\) )

\(\Leftrightarrow x^2=y^2=z^2=t^2\)

\(\Leftrightarrow x^2=y^2=z^2=t^2=\frac{1}{4}\)

Kết hợp với \(xy+yz+zt+tx=1\) suy ra

\((x,y,z,t)=(\frac{1}{2};\frac{1}{2}; \frac{1}{2}; \frac{1}{2}); (\frac{-1}{2};\frac{-1}{2}; \frac{-1}{2}; \frac{-1}{2})\)

14 tháng 11 2017

1 giây trước mình vừa nghĩ ra bài.

1 giây sau có thông báo mới:Akai Haruma đã trả lời 1 câu hỏi của bạn.

Mình lại úp mặt vào bàn, ngẫm sự đời 1 giây.

NV
4 tháng 5 2020

Bạn tham khảo:

Câu hỏi của Online Math - Toán lớp 8 | Học trực tuyến

5 tháng 6 2019

#)Góp ý :

   Mời bạn tham khảo :

   http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

   Mình sẽ gửi link này về chat riêng cho bạn !

6 tháng 6 2019

Tham khảo qua đây nè :

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017

tk cho mk nhé

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

21 tháng 4 2020

Cảm ơn ạ =)

NV
16 tháng 3 2020

\(Q=\frac{1}{\frac{x}{y}+\frac{z}{x}+1}+\frac{1}{\frac{y}{z}+\frac{x}{y}+1}+\frac{1}{\frac{z}{x}+\frac{y}{z}+1}\)

Đặt \(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(Q=\frac{1}{a^3+c^3+1}+\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\)

Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow Q\le\frac{1}{ac\left(a+c\right)+1}+\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}\)

\(Q\le\frac{abc}{ac\left(a+c\right)+abc}+\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}\)

\(Q\le\frac{b}{a+b+c}+\frac{c}{a+b+c}+\frac{a}{a+b+c}=1\)

\(\Rightarrow Q_{max}=1\) khi \(a=b=c=1\) hay \(x=y=z\)