Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp
Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:
TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp
TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn
=> có 6!.5C2.2 = 14400 cách xếp
=> có tất cả 21600 cách xếp
~ Chúc bn hok tốt ~
Giải thích các bước giải:
Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp
Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:
TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp
TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn
=> có 6!.5C2.2 = 14400 cách xếp
=> có tất cả 21600 cách xếp
Phương trình dạng tổng quát của \(d_1\): \(x+3y-7=0\)
Phương trình dạng tổng quát của \(d_2\): \(x-3y+2=0\)
a/ Gọi M là 1 điểm bất kì thuộc \(d_1\Rightarrow x_M+3y_M-7=0\) (1)
Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{a}\Rightarrow\left\{{}\begin{matrix}x_M=x_{M'}-1\\y_M=y_{M'}-1\end{matrix}\right.\)
Thay vào (1): \(x_{M'}-1+3\left(y_{M'}-1\right)-7=0\)
\(\Leftrightarrow x_{M'}+3y_{M'}-11=0\)
Vậy ảnh của \(d_1\) có pt: \(x+3y-11=0\)
Gọi \(M_2\) là 1 điểm bất kì thuộc \(d_2\Rightarrow x_{M_2}-3y_{M_2}+2=0\)
Gọi M'' là ảnh của \(M_2\) qua phép tịnh tiến \(\overrightarrow{a}\) \(\Rightarrow\left\{{}\begin{matrix}x_{M2}=x_{M''}-1\\y_{M2}=y_{M''}-1\end{matrix}\right.\)
\(\Rightarrow x_{M''}-1-3\left(y_{M''}-1\right)+2=0\Leftrightarrow x_{M''}-3y_{M''}+4=0\)
Ảnh của d2 là: \(x-3y+4=0\)
b/ \(\Rightarrow I\left(5;-6\right)\)
Gọi M là 1 điểm bất kì thuộc d \(\Rightarrow4x_M-2y_M+3=0\) (1)
Gọi M' là ảnh của M qua phép đối xứng tâm I
\(\Rightarrow\left\{{}\begin{matrix}x_M=10-x_{M'}\\y_M=-12-y_{M'}\end{matrix}\right.\)
Thế vào (1): \(4\left(10-x_{M'}\right)-2\left(-12-y_{M'}\right)+3=0\)
\(\Rightarrow4x_{M'}-2y_{M'}-67=0\)
Hay ảnh của d qua phép đối xứng tâm I có pt: \(4x-2y+67=0\)
- Tương tự, gọi \(M_1\) là 1 điểm bất kì thuộc \(d_1\Rightarrow x_{M1}+3y_{M1}-7=0\)
\(M_1'\) là ảnh của M qua phép đối xứng tâm I \(\Rightarrow\left\{{}\begin{matrix}x_{M1}=10-x_{M_1'}\\y_{M1}=-12-y_{M_1'}\end{matrix}\right.\)
\(\Rightarrow10-x_{M_1'}+3\left(-12-y_{M_1'}\right)-7=0\)
\(\Leftrightarrow x_{M_1'}+3y_{M_1'}+33=0\)
Ảnh của d1 là: \(x+3y+33=0\)
Ảnh của d2 bạn tự làm nốt tương tự
a/ \(S=5.15-2+5.16-2+...+5.40-2\)
\(=5\left(15+16+...+40\right)-2.26\)
\(=5.715-2.26=3523\)
b/ \(S=5\left(2+4+...+30\right)-2.29\)
\(=5.240-2.29=1142\)
Giải thích các bước giải:
Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp
Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:
TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp
TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn
=> có 6!.5C2.2 = 14400 cách xếp
=> có tất cả 21600 cách xếp
Đáp án B
Phương pháp: Xét các trường hợp:
TH1: a1 + a2 = a3 + a4 = a5 + a6 = 5
TH2: a1 + a2 = a3 + a4 = a5 + a6 = 6
TH3: a1 + a2 = a3 + a4 = a5 + a6 = 7
Cách giải:
TH1: a1 + a2 = a3 + a4 = a5 + a6 = 5, ta có 0 + 5 = 1 + 4 = 2 + 3
- Nếu (a1;a2) = (0;5) => có 1 cách chọn (a1a2)
Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Tương tự (a5a6) có 2 cách chọn.
=> Có 8 số thỏa mãn.
- Nếu (a1;a2) ↓ (0;5) => có 2 cách chọn (a1a2), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Có 2 cách chọn (a3a4), 2 số này có thể đổi vị trí cho nhau nên có 4 cách chọn.
Tương tự (a5a6) có 2 cách chọn.
=> Có 32 số thỏa mãn.
Vậy TH1 có: 8 + 32 = 40 số thỏa mãn.
TH2: a1 + a2 = a3 + a4 = a5 + a6 = 6, ta có 0 + 6 = 1 + 5 = 2 + 4 = 6.
Tương tự như TH1 có 40 số thỏa mãn.
TH3: a1 + a2 = a3 + a4 = a5 + a6 = 7, ta có 1 + 6 = 2 + 5 = 3 + 4 = 7
Có 3 cách chọn (a1a2), hai số này có thể đổi chỗ cho nhau nên có 6 cách chọn.
Tương tự có 4 cách chọn (a3a4) và 2 cách chọn (a5a6).
Vậy TH3 có 6.4.2 = 48 số thỏa mãn.
Vậy có tất cả 40 + 40 + 48 = 128 số có 6 chữ số khác nhau thỏa mãn a1 + a2 = a3 + a4 = a5 + a6
Để viết một số có 6 chữ số khác nhau bất kì có 6.6.5.4.3.2 = 4320 số.
Vậy P = 128 4320 = 4 135 .