Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{A}{B}=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-2}{x^2+1}=3x^2+x-3+\dfrac{5x-2}{x^2+1}\)
Để A chia hết cho B thì \(\left(5x-2\right)\left(5x+2\right)⋮x^2+1\)
\(\Leftrightarrow25x^2-4⋮x^2+1\)
\(\Leftrightarrow25x^2+25-29⋮x^2+1\)
\(\Leftrightarrow x^2+1\in\left\{1;29\right\}\)
hay \(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)
Bài 2:
a)\(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b)\(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=x\left(x-5\right)+3\left(x-5\right)\)
c)\(y\left(x-z\right)+7\left(z-x\right)\)
\(=7\left(z-x\right)-y\left(z-x\right)\)
\(=\left(7-y\right)\left(z-x\right)\)
\(=\left(x-5\right)\left(x+3\right)\)
d)\(36-12x+x^2\)
\(=x^2-12x+36\)
\(=\left(x-6\right)^2\)
Bài 1:
a)\(2x\left(x^2-7x-3\right)=2x^3-14x^2-6x\)
b)\(\left(-2x^3+34y^2-7xy\right)\cdot4xy^2=136xy^4-28x^2y^3-8x^4y^2\)
c)\(\left(x^2-2x+3\right)\left(x-4\right)\)
\(=x^2\left(x-4\right)-2x\left(x-4\right)+3\left(x-4\right)\)
\(=x^3-4x^2-2x^2+8x+3x-12\)
\(=x^3-6x^2+11x-12\)
d)\(\left(2x^3-3x-1\right)\left(5x+2\right)\)
\(=5x\left(2x^3-3x-1\right)+2\left(2x^3-3x-1\right)\)
\(=10x^4-15x^2-5x+4x^3-6x-2\)
\(=10x^4+4x^3-15x^2-11x-2\)