K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

Phương trình mặt chắn của mặt phẳng (ABC) là: 

Từ giả thiết  Kết hợp với a > 0, b > 0, c > 0 suy ra mặt phẳng (ABC) luôn đi qua một điểm cố định có tọa độ là  1 2 ; 1 2 ; 1 2 . Chọn C.

1 tháng 11 2019

Chọn C.

19 tháng 11 2019

Đáp án B

Phương pháp: (P) cách đều B, C ó d(B;(P)) = d(c;(P))

TH1: BC // (P)

TH2: I  ∈ (P), với I là trung điểm của BC

Cách giải:

Ta có: 

(P) cách đều B, C ó d(B;(P)) = d(c;(P))

TH1: BC // (P)

=> (P) đi qua O và nhận  là 1 VTPT

TH2:  (P) với I là trung điểm của BC

 

=> (P): 6x – 3y + 4z = 0

Dựa vào các đáp án ta chọn được đáp án B

17 tháng 3 2018

12 tháng 5 2018

3 tháng 2 2019

Đáp án A.

1. Tìm tọa độ tâm I ngoại tiếp tứ diện OABC

Gọi M là trung điểm của AB thì M a 2 ; b 2 ; 0 . Đường thẳng d là trục của  nên d đi qua M và nhận vecto chỉ phương  k → = 0 ; 0 ; 1

Phương trình tham số của đường thẳng d : x = a 2 y = b 2 z = t t ∈ ℝ .

 

Gọi N là trung điểm của OC thì N 0 ; 0 ; c 2 .

Mặt phẳng (P) là mặt phẳng trung trực của OC nên (P)   đi qua M và nhận vecto pháp tuyến là k → = 0 ; 0 ; 1 .

Phương trình tổng quát của mặt phẳng P : z = c 2 .

Khi đó tâm I của mặt cầu ngoại tiếp tứ diện OABC là giao điểm của đường thẳng d và mặt phẳng (P), tức I a 2 ; b 2 ; c 2 .

2. Tìm mặt phẳng (P)   là quỹ tích của tâm I và tính  d O ; P   .

Ta có   x I = a 2 ; y I = b 2 ; z I = c 2 ⇒ a = 2 x I b = 2 y I c = 2 z I

  a + 2 b + 2 c = 6 nên   2 x I + 2.2 y I + 2.2 z I = 6 ⇔ x I + 2 y I + 2 z I − 3 = 0

 

Vậy điểm I luôn nằm trên một mp cố định có pt là P : x + 2 y + 2 z − 3 = 0 .

Vậy  d O ; P = 0 + 2.0 + 2.0 − 3 1 2 + 2 2 + 2 2 = 1

21 tháng 4 2017

Đáp án A

Mặt phẳng (P) cắt Ox, Oy, Oz  tại M, N, P có phương trình x 2 + y b + z c = 1  

Vì N thuộc mặt phẳng (P)  ⇒ 1 2 + 2 b + 1 c = 1 ⇔ 1 b + 1 c = 1 2 ⇔ b c = 2 b + c .

15 tháng 7 2017

Đáp án A

Phương trình mặt phẳng A B C : x a + y b + z c = 1  

Vì I ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 6 a b c 3 ⇔ a b c ≥ 162  

Thể tích khối tứ diện OABC được tính là V = O A . O B . O C 6 = a b c 6 ≥ 162 6 = 27  

Dấu “=” xảy ra khi 1 a = 2 b = 3 c = 1 3 ⇒ a = 3 b = 6 c = 9  

Kiểm tra thấy phương án A không đúng

5 tháng 2 2017

Do M(2;0;0), B(0;b;0), C(0;0;c) thuộc (P) nên 

Chọn A.

3 tháng 8 2017

Đáp án A

Phương pháp:

+) Viết phương trình mặt phẳng (ABC) ở dạng đoạn chắn, thay tọa độ điểm M vào pt mặt phẳng (ABC).

+) (ABC) tiếp xúc với mặt cầu (S) tâm I bán kính R ó d(I;(ABC)) = R

Cách giải:

(ABC) tiếp xúc với mặt cầu (S) có tâm I(1;2;3) và bán kính  R = 72 7