Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
H ∈ d ⇒ H ( t ; 1 − t ; − 1 + 2 t ) ⇒ M H → ( t − 1 ; 1 − t ; 2 t − 5 ) M H → . u d → = 0 ⇔ t − 1 + t − 1 + 4 t − 10 = 0 ⇔ t = 2 ⇒ H ( 2 ; − 1 ; 3 )
Đáp án là B
Phương trình đường thẳng d đi qua M vuông góc
với (P) nhận véc tơ pháp tuyến
a) (P) có vec tơ pháp tuyến là \(\overrightarrow{n_1}\left(1;1;1\right)\)
\(\overrightarrow{AB}\left(1;-1;-1\right)\)
Vì (Q) vuông góc với mp (P) và chứa A; B nên véc tơ pháp tuyến của (Q) là \(\overrightarrow{n_2}\) vuông góc với cả \(\overrightarrow{n_1}\left(1;1;1\right)\) và \(\overrightarrow{AB}\left(1;-1;-1\right)\)
=> \(\overrightarrow{n_2}\) = \(\left[\overrightarrow{n_1};\overrightarrow{AB}\right]\) = (0; 2; -2)
mp(Q) đi qua A (-1;2;2) và có vec tơ pt là \(\overrightarrow{n_2}\) có phương trình là: 0.(x +1) + 2(y - 2) -2.(z - 2) = 0 <=> 2y - 2z = 0 <=> y - z = 0
b) đường thẳng AB có vec tơ chỉ phương là \(\overrightarrow{AB}\left(1;-1;-1\right)\) và đi qua B(0;1;1) có phương trình tham số là:
\(\begin{cases}x=t\\y=1-t\\z=1-t\end{cases}\left(t\in R\right)\)
H = AB giao với (P)
H thuộc AB => H (a; 1-a; 1 - a)
H thuộc mp(P) => a + 1- a+ 1 - a = 0 => 2 - a = 0 => a = 2
Vậy H (2; -1; -1)
Đáp án D
H ∈ d ⇒ H ( t ; 1 − t ; − 1 + 2 t ) ⇒ M H → ( t − 1 ; 1 − t ; 2 t − 5 ) M H → . u d → = 0 ⇔ t − 1 + t − 1 + 4 t − 10 = 0 ⇔ t = 2 ⇒ H ( 2 ; − 1 ; 3 )