K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

Ta có: P = x5 + xy + 0,3y2 – x2y3 – 2

và Q = x2y3 + 5 – 1,3y2.

⟹ P + Q = (x5 + xy + 0,3y2 – x2y3 – 2) + (x2y3 + 5 – 1,3y2)

= x5 + xy + 0,3y2 – x2y3 – 2 + x2y3 + 5 – 1,3y2

= x5 +(– x2y3 + x2y3)+ (0,3y2 – 1,3y2)+ xy +(– 2 + 5)

= x5 + 0 – y2 + xy + 3.

= x5 – y2 + xy + 3.

19 tháng 4 2017

a) Ta có M = x2y + 0,5xy3 – 7,5x3y2 + x3 và N = 3xy3 – x2y + 5,5x3y2.

=> M + N = x2y + 0,5xy3 – 7,5x3y2 + x3 + 3xy3 – x2y + 5,5x3y2

= – 7,5x3y2 + 5,5x3y2 + x2y – x2y + 0,5xy3 + 3xy3 + x3

= -2x3y2 + 3,5xy3 + x3

b) P = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2.

=> P + q = (x5 + xy + 0,3y2 – x2y3 – 2) + (x2y3 + 5 – 1,3y2)

= x5 + xy + 0,3y2 – x2y3 – 2 + x2y3 + 5 – 1,3y2

= x5 – x2y3 + x2y3 + 0,3y2 – 1,3y2 + xy - 2 + 5

= x5 - y2 + xy + 3.



24 tháng 5 2017

a)\(P+Q=\left(x^2y+xy^2-5x^2y^2+x^3\right)+\left(3xy^2-x^2y+x^2y^2\right)\)

=\(x^2y+xy^2-5x^2y^2+x^3+3xy^2-x^2y+x^2y^2\)

=\(x^2y-x^2y+xy^2+3xy^2-5x^2y^2+x^2y^2+x^3\)

=\(4xy^2-4x^2y^2+x^3\)

b)\(M+N=\left(x^3+xy+y^2-x^2y^2-2\right)+\left(x^2y^2+5-y^2\right)\)

=\(x^3+xy+y^2-x^2y^2-2+x^2y^2+5-y^2\)

=\(x^3+xy+y^2-y^2-x^2y^2+x^2y^2-2+5\)

=\(x^3+xy+3\)

Bài dài nên chắc sẽ có sai sót, nếu đúng bạn nha

19 tháng 4 2017

a) Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2

=> P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2

= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2

= x3 – 4x2y2 + 4xy2

b) Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2.

=> M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2

= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5

= x3 + xy + 3.



18 tháng 3 2018

a)

P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2

= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2

= x3 – 4x2y2 + 4xy2

b)

M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2

= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5

= x3 + xy + 3.

25 tháng 5 2017

a) (5x2y-5xy2+xy) + (xy-x2y2+5xy2)

= 5x2y-5xy2+xy+xy-x2y2+5xy2

= 5x2y+(5xy2-5xy2)+(xy+xy)-x2y2

= 5x2y+2xy-x2y2

b) (x2+y2+z2) + (x2-y2+z2)

= x2+y2+z2+x2-y2+z2

= (x2+x2)+(y2-y2)+(z2+z2)

= 2x2+2z2

11 tháng 1 2018

a)( \(5x^2y\)\(-\) \(5xy^2\) \(+\) \(xy\)) + (\(xy\) \(-\) \(x^2y^2\) \(+\) \(5xy^2\))

= \(5x^2y-5xy^2+xy+xy-x^2y^2+5xy^2\)

= \(5x^2y+2xy-x^2y^2\)

b) \(\left(x^2+y^2+z^2\right)+\left(x^2-y^2+z^2\right)\)

= \(x^2+y^2+z^2+x^2-y^2+z^2\)

=\(2x^2+2z^2\)

=\(2\left(x+z\right)^2\)

17 tháng 3 2016

M+N=(x3+xy+y2-x2y2-2)+(x2y2+5-y2)

=x3+xy+y2-x2y2+x2y2+5-y2

=tự lm tiếp

17 tháng 3 2016

\(x^3+xy+3\)

18 tháng 6 2020

Bài làm:

a) \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)

\(P=2x^4y^5-xy^4+x^3-y^2+4\)

Bậc của đa thức P là 9

b) Ta có:

\(N\left(-1\right)=2.\left(-1\right)+7+\left(-1\right)^3-2.\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)

\(N\left(-1\right)=-2+7-1-2-1+\frac{1}{2}\)

\(N\left(-1\right)=\frac{3}{2}\)

\(N\left(2\right)=2.2+7+2^3-2.2^2+2+\frac{1}{2}\)

\(N\left(2\right)=4+7+8-8+2+\frac{1}{2}\)

\(N\left(2\right)=\frac{27}{2}\)

c) Tại \(x=-\frac{1}{2};y=2\)thì giá trị của biểu thức P là:

\(P=2.\left(-\frac{1}{2}\right)^4.2^5-\left(-\frac{1}{2}\right).2^4+\left(-\frac{1}{2}\right)^3-2^2+4\)

\(P=4+8-\frac{1}{8}-4+4\)

\(P=\frac{95}{8}\)

Học tốt!!!!

a, Ta có :

 \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)

\(=2x^4y^5+x^3+4-y^2-xy^4\)

Bậc : 9 

b,TH1 :  \(N\left(-1\right)=2\left(-1\right)+7+\left(-1\right)^3-2\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)

\(=-2+7-1-2-1+\frac{1}{2}=\frac{3}{2}\)

TH2 : tương tự 

c, Thay vào tính thôi.

20 tháng 3 2018

a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)

\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)

\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)

Thay x-y+3=0 vào A

\(A=x^2.0-y.0+0-1=-1\)

b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)

\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)

\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)

Thay x-y+3=0 vào B

\(B=x^2.0-xy.0+2.0-2=-2\)