Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{13}{19}+\frac{18}{19}+\frac{19}{19}=\left(\frac{13}{19}+\frac{17}{19}\right)+\frac{18}{19}=\frac{20}{19}+\frac{18}{19}=\frac{48}{19}\)
b) \(\frac{3}{5}+\frac{3}{16}+\frac{13}{16}=\left(\frac{3}{16}+\frac{13}{16}\right)+\frac{3}{5}=1+\frac{3}{5}=\frac{5}{5}+\frac{3}{5}=\frac{8}{5}\)
a) \(\frac{13}{19}+\frac{18}{19}+\frac{17}{19}\)
= \(\frac{31}{19}+\frac{17}{19}\)
= \(\frac{48}{19}.\)
b) \(\frac{3}{5}+\frac{3}{16}+\frac{13}{16}\)
= \(\frac{3}{5}+\left(\frac{3}{16}+\frac{13}{16}\right)\)
= \(\frac{3}{5}+\frac{16}{16}\)
= \(\frac{3}{5}+1\)
= \(\frac{3}{5}.\)
\(\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}\)
\(=3.\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(=3.A\)với \(A=\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\)
\(\Rightarrow2^2A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)\)
\(\Rightarrow2^2A-A=\left(2+\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\frac{1}{2^9}\right)\)
\(\Rightarrow4A-A=2-\frac{1}{2^9}\)
\(\Rightarrow3A=2-\frac{1}{512}=\frac{1023}{512}\Rightarrow A=\frac{1023}{512}:3\)
\(\Rightarrow\frac{3}{2}+\frac{3}{8}+\frac{3}{32}+\frac{3}{128}+\frac{3}{512}=3.\left(\frac{1023}{512}:3\right)=\frac{1023}{512}\)
a, \(\frac{2}{3}+\frac{2}{3}+\frac{6}{3}=\frac{10}{3}\)
b,\(\frac{3}{4}+\frac{3}{4}+\frac{3}{2}=\frac{6}{4}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)
a)
Ta có 215 x 86 +13 x 215 +215
=215x(86+13+1)
=215 x 100
=215
b)
Ta có 52 x 128 - 41 x 128 - 128 -128
=128 x ( 52 -41 -1-1)
=128 x 9
=1152
\(A\cdot2=\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{256}\right)\cdot2\)
\(=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}\)
\(A\cdot2-A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}...+\frac{1}{128}-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}=\frac{255}{256}\)
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{256}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)
\(2A=1+\frac{1}{2}+...+\frac{1}{2^7}\)
\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^7}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
\(A=1-\frac{1}{2^8}\)
\(A=\frac{2^8-1}{2^8}\)
\(A=\frac{255}{256}\)
dãy trên có số số hạng là: \(\left(128-3\right):5+1=26\left(số\right)\)
A=\(\left(128+3\right)\times26:2=1703\)