Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sin^230^0+\sin^240^0+\sin^250^0+\sin^260^0\)
\(B=\sin^230^0+\sin^240^0+\cos^2\left(90^0-50^0\right)+\cos^2\left(90^0-60^0\right)\)
\(B=\sin^230^0+\sin^240^0+\cos^240^0+\cos^230^0\)
\(B=\left(\sin^230^0+\cos^230^0\right)\left(\sin^240^0+\cos^240^0\right)\)
\(B=1+1\)
\(B=2\)
Chúc bạn hok tốt!!! vvvvvvvv
Ta có :\(\sin\left(60\right)=\cos\left(30\right)\)(phụ nhau)
\(\Leftrightarrow sin^2\left(60\right)=\cos^2\left(30\right)\)
và :\(sin^2\left(50\right)=\cos^2\left(40\right)\)(tương tự như trên nha bạn)
Thay vào biểu thức B ta có :
\(B=\sin^2\left(30\right)+sin^2\left(40\right)+\cos^2\left(30\right)+\cos^2\left(40\right)\)
\(B=1+1\)
\(B=2\)
chúc bạn học tốt :)
P=sin2200+sin2400+sin2450+sin2500+sin2700
đổi sin2500 thành cos2400,sin2700 thành cos2200 rồi thay vào ta được:
sin2200+cos2200+sin2400+cos2400+\(\left(\dfrac{\sqrt{2}}{2}\right)^2\)
=\(2+\dfrac{1}{2}=\dfrac{5}{2}=2,5\)
a: \(=\left(sin^210^0+sin^280^0\right)+\left(sin^220^0+sin^270^0\right)+sin^245^0\)
\(=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
b: \(=\left(sin^242^0+sin^248^0\right)+\left(sin^243^0+sin^247^0\right)+...+sin^245^0\)
=1+1+1+1/2
=3,5
c: \(=tan35^0\cdot tan55^0\cdot tan40^0\cdot tan50^0\cdot tan45^0=1\)
d: \(=\left(cos^215^0+cos^275^0\right)-\left(cos^225^0+cos^265^0\right)+\left(cos^235^0+cos^255^0\right)-\dfrac{1}{2}\)
=1-1+1-1/2
=1/2
Ta có : \(\cot\left(37\right)=\tan\left(53\right)\) ,\(\sin^2\alpha+\cos^2\alpha=1,\tan\alpha\cdot\cot\alpha=1\)
\(sin\left(28\right)=\cos\left(62\right)\)
\(\Leftrightarrow sin^2\left(28\right)=\cos^2\left(62\right)\)
\(\cot\left(36\right)=\tan\left(54\right)\)
Đề : \(\cot\left(37\right)\cdot\cot\left(53\right)+\sin^2\left(28\right)-\frac{3\cdot\tan\left(54\right)}{\cot\left(36\right)}+sin^2\left(62\right)\)
\(=\tan\left(53\right)\cdot\cot\left(53\right)+\cos^2\left(62\right)-\frac{3\cdot\tan\left(54\right)}{\tan\left(54\right)}+\sin^2\left(62\right)\)
\(=\)\(\tan\left(53\right)\cdot\cot\left(53\right)+\cos^2\left(62\right)+\sin^2\left(62\right)-\frac{3\cdot\tan\left(54\right)}{\tan\left(54\right)}\)
\(=1+1-3\)
\(=-1\)
ta có : \(M=2cot37.cot53+sin^228\dfrac{3tan54}{cot36}+sin^262\)
\(=2.cot37.cot\left(90-37\right)+sin^228\dfrac{3tan54}{cot\left(90-54\right)}+sin^262\)
\(=2.cot37.tan37+sin^228\dfrac{3tan54}{tan54}+sin^262\)\(=2+3sin^228+sin^262=2+2sin^228+sin^228+sin^2\left(90-28\right)\)
\(=2+2sin^228+sin^228+cos^228=3+2sin^228\)
- Nhập \(sin^2\left(20^o\right)+sin^2\left(30^o\right)+sin^2\left(40^o\right)+sin^2\left(50^o\right)+sin^2\left(60^o\right)+sin^2\left(70^o\right)\)
vào màn hình bấm \(=3\)
- Nhập \(sin^2\left(36^o\right)+sin^2\left(54^o\right)-2tan\left(25^o\right).tan\left(65^0\right)\)vào màn hình bấm \(=-0,6031977533\)
\(=\left(sin^215^0+sin^275^0\right)+\left(sin^230^0+sin^260^0\right)+\left(sin^240^0+sin^250^0\right)\)
\(=\left(sin^215^0+cos^215^0\right)+\left(sin^230^0+cos^230^0\right)+\left(sin^240^0+cos^240^0\right)\)
=1+1+1
=3
\(sin^215^o+sin^230^o+sin^240^o+sin^275^o+sin^260^o+sin^250^o\\ =\left(sin^215^o+sin^275^o\right)+\left(sin^230^o+sin^260^o\right)+\left(sin^240^o+sin^250^o\right)\\ =1+1+1=3\)