K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

Gọi UCLN(2n+1;3n+1) là d

Ta có:

[3(2n+1)]-[2(3n+1)] chia hết d

=>[6n+3]-[6n+2] chia hết d

=>1 chia hết d

=>d=1

Vậy UC(2n+1;3n+1)=1

20 tháng 8 2016

\(G\text{ọi}dl\text{à}UCLN\left(2n+1;3n+1\right)\\ =>2n+1v\text{à}3n+1⋮d\\ =>\left(2n+1\right)-\left(3n+1\right)⋮d\\ =>3\left(2n+1\right)-\left(2\left(3n+1\right)\right)⋮d\)

\(=>6n+3-6n-2⋮d\\ =1⋮d\\ =>d=1\)

Vậy UCLN(2n+1;3n+1) là 1 hay UC (2n+1;3n+1) là 1

22 tháng 10 2016

2n+1;6n+5 la` sao ban. ?

22 tháng 10 2016

tức là cả 2 biểu thức này đều = 1

8 tháng 4 2016

a là chia het k phai ls;

8 tháng 4 2016

a, bạn ghi lại đề nhé

b, gọi UCLN là d

=>2n+1 chia hết cho d=>2n+1 .3 chia hết cho d=>6n+3 chia hết cho d

=>3n+1 chia hết cho d=>3n+1 .2 chia hết cho d=>6n+2 chia hết cho d

=>(6n+3)-(6n+2) chia hết cho d

=> 1 chia hết cho d 

=> d=1 hoặc -1

=> ƯCLN(2n+1;3n+1)=1;-1

11 tháng 11 2016

Gọi A là UC(2n+1,3n+1)

\(\rightarrow\)2n+1\(⋮\)A\(\Rightarrow\)3(2n+1)\(⋮\)A

\(\rightarrow\)3n+1\(⋮\)A\(\Rightarrow\)2(3n+1)\(⋮\)A

Từ đó suy ra:

3(2n+1)-2(3n+1)\(⋮\)A

6n+3-6n-2\(⋮\)A

1\(⋮\)A

\(\Rightarrow\)A=1

Vậy UC(2n+1,3n+1)=1

17 tháng 6 2018

Gọi a là ước chung 2n + 1 và 3n +1 , a ∈ N

Theo bài ra ta có :

2n + 1 ⋮ a ; 3n + 1 ⋮ a

⇒ 3 ( 2n + 1 ) ⋮ a ; 2 ( 3n + 1 )

⇒ 6n + 3 ⋮ a ; 6n + 2 ⋮ a

⇒ ( 6n + 3 ) - ( 6n + 2 ) ⋮ a

⇒ 1 ⋮ a

⇒ a ∈ Ư ( 1 ) = { 1 ; -1 }

Vì a ∈ N nên a = 1

Vậy ước chung của 2n + 1 và 3n + 1 là 1

28 tháng 11 2014

Gọi d là ƯCLN(2n+1;3n+1)

=>2n+1 chia hết cho d và 3n+1 chia hết cho d

=>3(2n+1)chia hết cho d và 2(3n+1) chia hết cho d

=>6n+3 chia hết cho d và 6n+2 chia hết cho d

=>(6n+3)-(6n+2) chia hết cho d

=>1 chia hết cho d;ƯCLN(2n+1;3n+1)=1

=>ƯC(2n+1;3n+1)=1

17 tháng 6 2017

a, Ta có:

\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)

\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)

Ta lại có:

\(9^n-2^n⋮9-2=7;2n.7⋮7\)

\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)

17 tháng 1 2018

Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé

a)    \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)

Để   \(\frac{3n-2}{n-3}\)nguyên  thì   \(\frac{7}{n-3}\)nguyên

hay     \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng sau:

\(n-3\)     \(-7\)               \(-1\)                   \(1\)                    \(7\)

\(n\)              \(-4\)                  \(2\)                    \(4\)                   \(10\)

Vậy....