Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bạn ghi lại đề nhé
b, gọi UCLN là d
=>2n+1 chia hết cho d=>2n+1 .3 chia hết cho d=>6n+3 chia hết cho d
=>3n+1 chia hết cho d=>3n+1 .2 chia hết cho d=>6n+2 chia hết cho d
=>(6n+3)-(6n+2) chia hết cho d
=> 1 chia hết cho d
=> d=1 hoặc -1
=> ƯCLN(2n+1;3n+1)=1;-1
Gọi A là UC(2n+1,3n+1)
\(\rightarrow\)2n+1\(⋮\)A\(\Rightarrow\)3(2n+1)\(⋮\)A
\(\rightarrow\)3n+1\(⋮\)A\(\Rightarrow\)2(3n+1)\(⋮\)A
Từ đó suy ra:
3(2n+1)-2(3n+1)\(⋮\)A
6n+3-6n-2\(⋮\)A
1\(⋮\)A
\(\Rightarrow\)A=1
Vậy UC(2n+1,3n+1)=1
Gọi a là ước chung 2n + 1 và 3n +1 , a ∈ N
Theo bài ra ta có :
2n + 1 ⋮ a ; 3n + 1 ⋮ a
⇒ 3 ( 2n + 1 ) ⋮ a ; 2 ( 3n + 1 )
⇒ 6n + 3 ⋮ a ; 6n + 2 ⋮ a
⇒ ( 6n + 3 ) - ( 6n + 2 ) ⋮ a
⇒ 1 ⋮ a
⇒ a ∈ Ư ( 1 ) = { 1 ; -1 }
Vì a ∈ N nên a = 1
Vậy ước chung của 2n + 1 và 3n + 1 là 1
Gọi d là ƯCLN(2n+1;3n+1)
=>2n+1 chia hết cho d và 3n+1 chia hết cho d
=>3(2n+1)chia hết cho d và 2(3n+1) chia hết cho d
=>6n+3 chia hết cho d và 6n+2 chia hết cho d
=>(6n+3)-(6n+2) chia hết cho d
=>1 chia hết cho d;ƯCLN(2n+1;3n+1)=1
=>ƯC(2n+1;3n+1)=1
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
Gọi UCLN(2n+1;3n+1) là d
Ta có:
[3(2n+1)]-[2(3n+1)] chia hết d
=>[6n+3]-[6n+2] chia hết d
=>1 chia hết d
=>d=1
Vậy UC(2n+1;3n+1)=1
\(G\text{ọi}dl\text{à}UCLN\left(2n+1;3n+1\right)\\ =>2n+1v\text{à}3n+1⋮d\\ =>\left(2n+1\right)-\left(3n+1\right)⋮d\\ =>3\left(2n+1\right)-\left(2\left(3n+1\right)\right)⋮d\)
\(=>6n+3-6n-2⋮d\\ =1⋮d\\ =>d=1\)
Vậy UCLN(2n+1;3n+1) là 1 hay UC (2n+1;3n+1) là 1