Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy
2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15
3,
*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)
*) 2+3=8 hay 2.(2+3)-2=8
4+5=32 hay 4.(4+5)-4=32
5+8=60 hay 5.(5+8)-5=60
6+7=72 hay 6.(6+7)-6=72
7+8= 7.(7+8)-7=98
20
Gọi n là số con cá trên một đơn vị diện tích hồ (n>0). Khi đó:
Cân nặng của một con cá là: P(n)=480−20nP(n)=480−20n
Cân nặng của n con cá là:nP(n)=480n−20n2,n>0nP(n)=480n−20n2,n>0
Xét hàm số:f(n)=480n−20n2,n>0f(n)=480n−20n2,n>0
Ta có:
f′(n)=480−40nf′(n)=0⇔n=12f′(n)=480−40nf′(n)=0⇔n=12
Lập bảng biến thiên ta thấy số cá phải thả trên một đơn vị diện tích hồ để có thu hoạch nhiều nhất là 12 con.
19 Gọi H là chân đường vuông góc kẻ từ A.
Áp dụng định lý Ta-lét cho các tam giác BAH và ABC ta được:
nên diện tích của hình chữ nhật sẽ là:
Vì không đổi nên S phụ thuộc tích BQ.AQ mà (bđt Cauchy)
nên
Dấu bằng xra khi BQ=AQ=>M là trung điểm AH
Đặt MA=x \(\Rightarrow\)MB= 24-x với \(x\in\left[0;24\right]\)
Đặt f(x)=MC+MD=\(\sqrt{MA^2+AC^2}+\sqrt{MB^2+BD^2}=\sqrt{x^2+10^2}+\sqrt{\left(24-x^2\right)+30^2}\)
Ta xét hàm f(x) trên đoạn [0;24]
\(f'\left(x\right)=\frac{x}{\sqrt{x^2+10^2}}-\frac{24-x}{\sqrt{\left(24-x\right)^2+30^2}}\\ =\frac{MA}{MC}-\frac{MB}{MD}\)
\(f'\left(x\right)=0\Leftrightarrow\frac{MA}{MC}-\frac{MB}{MD}=0\Leftrightarrow\frac{MA}{MC}=\frac{MB}{MD}\)
từ đó suy ra hai tam giác vuông \(\Delta MAC\) và \(\Delta MBD\) đồng dạng
\(\Rightarrow\frac{MA}{MC}=\frac{MB}{MD}=\frac{AC}{BD}=\frac{1}{3}\)
Vậy \(MA=\frac{24}{3+1}=6\)(m) và MB=24-6=18(m)
gọi a,b,c(cm) lần lượt là số đo 3 chiều của hình hộp
Ta có: \(S_1=a.b\\ S_2=b.c\\ S_3=a.c\)
\(\Rightarrow V=a.b.c=\sqrt{S_1.S_2.S_3}=\sqrt{20.28.35}=140\left(cm^3\right)\)
Câu 1:
Phương trình hoành độ giao điểm :
\(mx-\frac{x-2}{x-1}=0\Leftrightarrow mx^2-(m+1)x+2=0\)
Để 2 ĐTHS cắt nhau tại hai điểm phân biệt thì đương nhiên pt trên phải có hai nghiệm phân biệt
Do đó: \(\left\{\begin{matrix} m\neq 0\\ \Delta=(m+1)^2-8m>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m^2-6m+1>0\end{matrix}\right.\) (1)
Áp dụng hệ thức viete: \(\left\{\begin{matrix} x_1+x_2=\frac{m+1}{m}\\ x_1x_2=\frac{2}{m}\end{matrix}\right.\)
Dễ thấy , đồ thị \(y=\frac{x-2}{x-1}\) có TCĐ \(x=1\) và TCN $y=1$
Khi đó, để 2 giao điểm thuộc hai nhánh của nó thì:
\(x_1>1;x_2<1 \Rightarrow (x_1-1)(x_2-1)<0\)
\(\Leftrightarrow \frac{2}{m}-\frac{m+1}{m}+1<0\Leftrightarrow \frac{1}{m}<0\Leftrightarrow m< 0\)(2)
Từ \((1),(2)\Rightarrow m< 0\)
Đáp án D
47. y=x ĐA: D
48. A(-4;0); B(0;4); C(x; 3)
\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)
A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D
49.A(2;-2); B(3;1); C(0;2)
\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)
=>Tam giác vuông cân=> ĐA:C
51. ĐA:D
52: A(-1;3); B(-3;-2); C(4;1)
\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)
ĐA: C
Vì n là số tự nhiên bé nhất nên n = 30.
b) n = 4
c) n = 16
d) n = 15