Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BẠN ^^
Tìm n thuộc N sao cho
a) 3n + 5 chia hết cho n+1
ta có 3n+5=3n+3+2=3.(n+1)+2
vì 3.(n+1) chia hết cho n+1 =>để 3.(n+1)+2 chia hết cho n+1 thì 2 phải chia hết cho n+1
=> n+1 thuộc {1;2} =>n thuộc {0;1}
b) 3n + 5 chia hết cho 2n+1
ta có: 3n+5=2n+n+1+4=(2n+1)+(n+4)
vì 2n+1 chia hết cho 2n+1 =>để (2n+1)+(n+4) chia hết cho 2n+1 thì (n+4) phải chia hết cho 2n +1
=>n+4>=2n+1
n+1+3 >=n+n+1
3>=n =>n thuộc {0;1;2;3}
* với n=0 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn
* với n=1 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn
c) 2n + 3 chia hết cho 5 - 2n
để 5-2n >=0 =>5-2n >=5-5 =>2n <=5 => n thuộc{0;1;2}
* với n=0 =>2n+3 =3 ; 5-2n=5 không thỏa mãn
*với n=1 =>2n+3=5 ;5 -2n=3 không thỏa mãn
*với n=2 =>2n+3=7 ; 5-2n =1 thỏa mãn vì 2n + 3 chia hết cho 5 - 2n
vậy n=3
3. Cho n thuộc N, chứng minh rằng
n^2 + n + 1 chia hết cho 4 và 5 ( đề bài phải là không chia hết cho 4 và 5 nhé)
gải : ta có n^2 + n + 1 =(n^2 + n) + 1=n.(n+1)+1
vì n.(n+1) là tích của 2 số tự nhiên liên tiếp luôn có kết quả là 1 số chẵn =>n.(n+1)+1 là 1 số lẻ
=>n.(n+1)+1 không chia hết cho 4
mặt khác n.(n+1) là tích của 2 số tự nhiên liên tiếp thì c/số tận cùng của kết quả luôn khác 4
=>n.(n+1)+1 là 1 số lẻ và tận cùng khác 5 nên không chia hết cho 5
vậy n^2 + n + 1 không chia hết cho 4 và 5
4.
vì với a là số nguyên tố thì 4a +11 >=4.2+11=19 (vì 4a +11 nhỏ nhất khi a nhỏ nhất =>a=2)
các số nguyên tố <30 và lớn hơn 15 là: 19;23;29
* nếu 4a +11=19 =>a=2 (thỏa mãn)
* nếu 4a +11=23 =>4a=12=>a=3(thỏa mãn)
* nếu 4a +11=29 =>4a=18=>a=18/4=9/2(không thỏa mãn)
vây a thuộc {2;3}
5/
gọi 7 số tn liên tiếp là: a;a+1;a+2;a+3;a+4;a+5;a+6
ta thấy: a +a+1+a+2+a+5 =4a+8 là tổng của 4 số tn trong 7 sô trên
mà 4a chia hết cho 4 ; 8 chia hết cho 4
=> 4a+8 chia hết cho 4
vậy Cho 7 stn bất kì, Chứng minh rằng ta luôn chọn được tổng của 4 số trong 7 số luôn chia hết cho 4
vì với a là số nguyên tố thì 4a +11 >=4.2+11=19 (vì 4a +11 nhỏ nhất khi a nhỏ nhất =>a=2) các số nguyên tố <30 và lớn hơn 15 là: 19;23;29 * nếu 4a +11=19 =>a=2 (thỏa mãn) * nếu 4a +11=23 =>4a=12=>a=3(thỏa mãn) * nếu 4a +11=29 =>4a=18=>a=18/4=9/2(không thỏa mãn) vây a thuộc {2;3}
Ta có: p≥2p≥2
Ta lại có:
4p+11<304p+11<30
⇒4p+11≤29⇒4p+11≤29
⇒4p≤18⇒4p≤18 hay 4p≤164p≤16
⇒p≤4⇒p≤4
Do đó p∈{2;3}p∈{2;3}
Ta xét 2TH:2TH:
TH1:TH1: Nếu p=2p=2 thì 4.2+11=8+11=19(tmđk)4.2+11=8+11=19(tmđk)
TH2:TH2: Nếu p=3p=3 thì 4.3+11=12+11=23(tmđk)4.3+11=12+11=23(tmđk)
Vậy: p∈{2;3}
Bạn tham khảo tại đây:Câu hỏi của oreen - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của oreen - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo đề bài và bài làm tại link trên nhé!
4a+11<30
suy ra 4.a<30 (1)
=>a={1;2;3;4;5;6;7} (2)
mà a={2;3} mới thỏa mãn các điều kiện (1) và(2)
=>a={2; 3}