K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2021

Ta có: 

\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)

Từ giả thiết \(\Rightarrow n,k\ge2\)

Ta có:

\(\hept{\begin{cases}n^3-n-1>1,n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}n^3-n-1=p^r\\n^2+n-1=p^s\end{cases}}\) trong đó \(\hept{\begin{cases}r\ge s\ge0\\r+s=k\end{cases}}\)

\(\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)          (1)

Mặt khác :

\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)

\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\)        (2)

Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\hept{\begin{cases}p=5\\k=2\end{cases}}\)

Vậy bộ số cần tìm là (n,k,p)=(2,2,5)

26 tháng 9 2018

12 tháng 3 2021

Ta có:

\(n^5+n^4-2n^3-2n^2+1=p^k\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\)

Từ gt \(\Rightarrow n,k\ge2\)

Ta có:

\(\left\{{}\begin{matrix}n^3-n-1>1;n^2+n-1>1,\forall n\ge2\\\left(n^3-n-1\right)-\left(n^2+n-1\right)=\left(n+1\right)n\left(n-2\right)\ge0,\forall n\ge2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}n^3-n-1=p^r\\n^2+n-1=p^s\end{matrix}\right.\) trong đó \(\left\{{}\begin{matrix}r\ge s>0\\r+s=k\end{matrix}\right.\)

\(\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow n^3-n-1-\left(n-1\right)\left(n^2+n-1\right)⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)       (1)

Mặt khác:

\(\left(n^2+n-1\right)-\left(n-2\right)=n^2+1>0,\forall n\)

\(\Rightarrow n^2+n-1>n-2\ge0,\forall n\ge2\) (2)

Từ (1) và (2) => n=2 => \(p^k=25\Rightarrow\left\{{}\begin{matrix}p=5\\k=2\end{matrix}\right.\)

Vậy bộ số (n,k,p)=(2,2,5)

12 tháng 3 2021

\(...\Leftrightarrow\left(n^2+n-1\right)\left(n^3-n-1\right)=p^k\).

Do đó \(\left\{{}\begin{matrix}n^2+n-1=p^v\\n^3-n-1=p^u\end{matrix}\right.\left(v,u\in N;v+u=k\right)\).

+) Với n = 2 ta có \(p^k=25=5^2\Leftrightarrow p=5;k=2\) 

+) Với n > 2 ta có \(n^3-n-1>n^2+n-1\Rightarrow v>u\Rightarrow n^3-n-1⋮n^2+n-1\)

\(\Rightarrow\left(n^2+n-1\right)\left(n-1\right)+n-2⋮n^2+n-1\)

\(\Rightarrow n-2⋮n^2+n-1\)

\(\Rightarrow\left(n-2\right)\left(n+3\right)⋮n^2+n-1\)

\(\Rightarrow6⋮n^2+n-1\).

Không tồn tại n > 2 thoả mãn

Vậy...

 

 

 

NV
11 tháng 4 2021

\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))

\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)

\(=...=C_n^3+C_n^2=C_{n+1}^3\)

Do đó:

\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)

\(\Leftrightarrow n-1=9\Rightarrow n=10\)

\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)

\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)

\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)

Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)

Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)

11 tháng 4 2021

undefined

\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)

21 tháng 12 2022

`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`

`<=>(2+1)^n=59049`

`<=>3^n=59049`

`<=>n=10 =>(2x^2+1/[x^3])^10`

Xét số hạng thứ `k+1:`

    `C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`

 `=C_10 ^k 2^[10-k] x^[20-5k]`

Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`

Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`