Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:( t chỉ làm bừa thôi)
Có \(\sqrt{x}+\sqrt{y}=\sqrt{1980}=6\sqrt{55}\)
Vì x,y nguyên nên \(\sqrt{x},\sqrt{y}\) đồng dạng với \(6\sqrt{55}\)
Vì \(\sqrt{x},\sqrt{y}\ge0\) nên có các trường hợp sau:
Tại: \(\sqrt{x}=0\) hay x=0 thì \(\sqrt{y}=6\sqrt{55}\) hay y=\(1980\)
\(\sqrt{x}=\sqrt{55}\) hay x=55thì \(\sqrt{y}=5\sqrt{55}\) hay y=1375
\(\sqrt{x}=2\sqrt{55}\) hay x=220 thì \(\sqrt{y}=4\sqrt{55}\) hay y=880
\(\sqrt{x}=3\sqrt{55}\) hay x=495 thì \(\sqrt{y}=3\sqrt{55}\) hay y=495
Tương tự như vậy ta cũng thu được các cặp (x,y) t/m (880,220),(1375,55),(1980,0)
Vậy pt có nghiệm (x,y)\(\in\)\(\left\{\left(0,1980\right),\left(55,1375\right),\left(220,880\right),\left(495,495\right),\left(880,220\right),\left(1375,55\right),\left(1980,0\right)\right\}\)
Bài 3:
Xét phương trình \(\sqrt{x}+\sqrt{y}=\sqrt{1980}\)
Vì x, y nguyên và x, y vai trò như nhau
Giả sử \(x\le y\Rightarrow\sqrt{x}\) và \(\sqrt{y}\) có dạng \(\sqrt{x}=a\sqrt{55},\sqrt{y}=b\sqrt{55}\)
với \(a+b=6\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\) hoặc
\(\left\{{}\begin{matrix}a=3\\b=3\end{matrix}\right.\)\(\left(a,b\in N,a\le b\right)\)
Vậy nghiệm nguyên dương cần tìm là:
\(\left(55,1375\right),\left(220,880\right),\left(495,495\right)\)
a) Dùng hệ thức Viét ta có:
\(x_1x_2=\dfrac{-35}{1}=-35\\ \Leftrightarrow7x_2=-35\\ \Leftrightarrow x_2=-5\\ x_1+x_2=\dfrac{-m}{1}=-m\\ \Leftrightarrow7+\left(-5\right)=-m\\ \Leftrightarrow-m=2\\ \Leftrightarrow m=-2\)
b) Dùng hệ thức Viét ta có:
\(x_1+x_2=\dfrac{-\left(-13\right)}{1}=13\\ \Leftrightarrow12,5+x_2=13\\ \Leftrightarrow x_2=0,5\\ x_1x_2=\dfrac{m}{1}=m\\ \Leftrightarrow12,5\cdot0,5=m\\ \Leftrightarrow m=6,25\)
c) Dùng hệ thức Viét ta có:
\(x_1+x_2=\dfrac{-3}{4}\\ \Leftrightarrow-2+x_2=\dfrac{-3}{4}\\ \Leftrightarrow x_2=\dfrac{5}{4}\\ x_1x_2=\dfrac{-m^2+3m}{4}\\ \Leftrightarrow4x_1x_2=-m^2+3m\\ \Leftrightarrow4\cdot\left(-2\right)\cdot\dfrac{5}{4}+m^2-3m=0\\ \Leftrightarrow m^2-3m-10=0\\ \Leftrightarrow m^2-5m+2m-10=0\\ \Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\\ \Leftrightarrow\left(m+2\right)\left(m-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2\\m=5\end{matrix}\right.\)
d) Dùng hệ thức Viét ta có:
\(x_1x_2=\dfrac{5}{3}\\ \Leftrightarrow\dfrac{1}{3}x_2=\dfrac{5}{3}\\ \Leftrightarrow x_2=5\\ x_1+x_2=\dfrac{-\left[-2\left(m-3\right)\right]}{3}=\dfrac{2\left(m-3\right)}{3}=\dfrac{2m-6}{3}\\ \Leftrightarrow3\left(x_1+x_2\right)=2m-6\\ \Leftrightarrow3\left(\dfrac{1}{3}+5\right)=2m-6\\ \Leftrightarrow3\cdot\dfrac{16}{3}+6=2m\\ \Leftrightarrow16+6=2m\\ \Leftrightarrow22=2m\\ \Leftrightarrow m=11\)
câu 2:DKXĐ: x \(\ge\)\(\frac{-1}{3}\);\(x\ne0\);1
PT\(\Leftrightarrow\frac{1}{\left(x-1\right)^2}-\frac{1}{x^2}=\sqrt{x+2}-\sqrt{3x+1}\)
\(\Leftrightarrow\frac{x^2-\left(x^2-2x+1\right)}{x^2\left(x-1\right)^2}=\frac{x+2-3x-1}{\sqrt{x+2}+\sqrt{3x-1}}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{x^2\left(x-1\right)^2}+\frac{1}{\sqrt{x+2}+\sqrt{3x+1}}\right)=0\)
vì \(\frac{1}{x^2\left(x-1\right)^2}+\frac{1}{\sqrt{x+2}+\sqrt{3x+1}}\ne0\)nên pt có nghiệm x= \(\frac{1}{2}\)
giả sử có tồn tại số TN n để \(2012+n^2\)là SCP
đặt \(2012+n^2=m^2\Leftrightarrow\left(m+n\right)\left(m-n\right)=2012\)(m thuộc Z)
m+n>m-n .ta có bảng:
m+n | 2012 | 1006 | 503 | -1 | -2 | -4 |
m-n | 1 | 2 | 4 | -2012 | -1006 | -503 |
m | .. | .. | .. | .. | .. | .. |
n | .. | .. | .. | .. | .. | .. |
giải bảng trên kết hợp với Đk n là số TN, ta thu được n=502 khi m=504 hoặc -504
a/ \(\Delta'=m^2-\left(m^2-2m-3\right)=2m+3\)
Do m nguyên dương \(\Rightarrow\Delta'>0\) nên pt luôn có nghiệm.
Để pt có nghiệm nguyên \(\Rightarrow\Delta'\) là số chính phương. Mà \(2m+3\) lẻ \(\Rightarrow\Delta'\) là số chính phương lẻ
Đặt \(2m+3=\left(2k+1\right)^2\) với \(k\in N;k>0\)
\(\Rightarrow2m+3=4k^2+4k+1\Rightarrow2m=4k^2+4k-2\Rightarrow m=2k^2+2k-1\)
Vậy với mọi m có dạng \(m=2k^2+2k-1\) trong đó k là số tự nhiên khác 0 thì pt luôn có nghiệm nguyên
b/ \(\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(m+7\right)=8-4m\ge0\Rightarrow m\le2\)
Mà m nguyên dương \(\Rightarrow m=1\) hoặc \(m=2\)
Với \(m=1\Rightarrow4x+8=0\Rightarrow x=-2\) nguyên (t/m)
Với \(m=2\Rightarrow x^2+6x+9=0\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\) nguyên (t/m
Vậy m=1 hoặc m=2
Câu c/ bạn tự giải nốt
Thay x = −10; y = −1 vào phương trình 2 x – ( m – 2 ) 2 y = 5 ta được
2 . ( − 10 ) – ( m – 2 ) 2 . ( − 1 ) = 5 ⇔ ( m – 2 ) 2 = 25
⇔ m − 2 = 5 m − 2 = − 5 ⇔ m = 7 ( N ) m = − 3 ( L )
Vậy m = 7
Đáp án: B