K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2023

Lời giải:

$x^2+4y^2-2xy=13$
$\Leftrightarrow (x^2+y^2-2xy)+3y^2=13$

$\Leftrightarrow (x-y)^2+3y^2=13$

$\Rightarrow 3y^2=13-(x-y)^2\leq 13< 15$

$\Rightarrow y^2< 5$

Vì $y^2\geq 0$ với mọi $y$ nguyên nên $y^2\in\left\{0; 1;4\right\}$

Với $y^2=0$:

$(x-y)^2=13-3y^2=13$ (loại vì 13 không là scp)

Với $y^2=1$:

$(x-y)^2=13-3y^2=10$ (loại vì 10 không là scp)

Với $y^2=4$:

$(x-y)^2=13-3y^2=1$

$\Rightarrow x-y=\pm 1$

$\Rightarrow x=y\pm 1$

$y^2=4\Rightarrow y=\pm 2$

Với $y=2$ thì $x=1$ hoặc $x=3$

Với $y=-2$ thì $x=-3$ hoặc $y=-1$

8 tháng 2 2019

PT \(\Leftrightarrow\left(x^2+3x\right)-2xy+\left(2y^2-2y+2\right)=0\) (1) 

(1) có nghiệm khi và chỉ khi \(\Delta'=y^2-\left(2y^2-2y+2\right)\ge0\)

\(\Leftrightarrow-y^2+2y-2\ge0\Leftrightarrow y^2-2y+2\le0\) (2)

Mà \(y^2-2y+2=\left(y-1\right)^2+1\ge1>0\forall y\)

Suy ra (2) vô nghiệm suy ra (1) vô nghiệm.

Vậy phương trình trên không có nghiệm nguyên.

15 tháng 11 2016

chuyển vế rồi lên google search: wolfram alpha.com.vn

nó cho cách làm với kết quả đó :V

16 tháng 11 2016

có ra ko :V

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1

18 tháng 9 2019

Câu 1: Tự làm :D

Câu 2: \(A=\left(x-y\right)^2+\left(y-2\right)^2+1\ge1\)

Đẳng thức xảy ra khi x = y = 2

Vậy...

Câu 3:

a) Trùng với câu 2

b) ĐK:x khác -1

\(B=\frac{3\left(x+1\right)}{x^2\left(x+1\right)+\left(x+1\right)}=\frac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\frac{3}{x^2+1}\le\frac{3}{0+1}=3\)

Đẳng thức xảy ra khi x = 0

18 tháng 9 2019

Làm nốt cái câu 1 và đầy đủ cái câu 2:v

\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

Làm nốt nha.Lười quá:((

2

\(A=x^2-2xy+2y^2-4y+5\)

\(A=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-y\right)^2+\left(y-2\right)^2+1\)

\(A\ge1\)

Dấu "=" xảy ra tại \(x=y=2\)

29 tháng 9 2018

C=\(\left[\left(x^2-2xy+y^2\right)+2\left(xy\right)+1\right]+\)\(\left(y^2-8y+16\right)\)\(\left(x-y+1\right)^2+\left(y-4\right)^2\)

\(\Rightarrow C=0\)

\(\Rightarrow\)Amin = 0 khi y = 4 ; x = 3

12 tháng 8 2019

\(a,9x-x^3=x\left(9-x^2\right)=x\left(3-x\right)\left(3+x\right)\)

\(b,\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)

\(c,x^3+2x^2-6x-27\)

\(=x^3+5x^2+9x-3x^2-15x-27\)

\(=\left(x^3-3x^2\right)+\left(5x^2-15x\right)+\left(9x-27\right)\)

\(=x^2\left(x-3\right)+5x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+5x+9\right)\)

\(d,\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)\)

\(=\left(x+y\right)\left(x+y-x+y\right)\)

\(=2y\left(x+y\right)\)

\(e,x-2x^2-4y^2-4y\)

Câu này ko phân tích đc nhé bn

Bn kiểm tra lại đề bài

\(g,x^3-x^2-5x+125\)

\(=x^3-6x^2+25x+5x^2-30x+125\)

\(=\left(x^3+5x^2\right)-\left(6x^2+30x\right)+\left(25x+125\right)\)

\(=x^2\left(x+5\right)-6x\left(x+5\right)+25\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

12 tháng 8 2019

C làm giúp em , em ghi sai đề ạ

e. x - 2x - 4y2 - 4y

12 tháng 3 2020

\(C=\left(x+3y\right)\left(x^2-3xy+9y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)-2\left(17y^3-x^3\right)\\ C=\left(x^3+27y^3\right)-\left(x^3-8y^3\right)-2\left(17y^3-x^3\right)\\ C=x^3+27y^3-x^3+8y^3-34y^3+2x^3\\ C=2x^3+y^3\\ \\ \)Thay x = 4 và y = 2 vào C ta được:

\(\\ C=2.4^3+2^3\\ C=128+8\\ C=136\)

Vậy giá trị của biểu thức C tại x = 4 và y = 2 là 136

13 tháng 3 2020

Em cảm ơn ạ