K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Ta có 3x + 4y = −10 ⇔ 3x = −4y – 10  ⇔ x = − 4 y − 10 3 ⇔ x = − y − y + 10 3

Đặt y + 10 3 = t t ∈ ℤ ⇒ y = 3t – 10 ⇒ x = − (3t – 10) – t = −4t + 10

Hay nghiệm nguyên của phương trình 3x + 4y = −10 là  x = − 4 t + 10 y = 3 t − 10 t ∈ ℤ

Vì x; y nguyên âm hay x < 0; y < 0 nên  − 4 t + 10 < 0 3 t − 10 < 0 ⇔ t > 2 , 25 t < 10 3

mà t ∈ ℤ ⇒ t = 3

Suy ra x = −4.3 + 10 = −2; y = 3.3 – 10 = −1 nên nghiệm nguyên âm cần tìm là (a; y) = (−2; −1)x.y = 2

Đáp án: A

4 tháng 1 2018

với m = 0 \Rightarrow ∫y=104x=4∫x=4y=104

với m khác 0 \Rightarrow ∫x+my=4mx+4y=10−m∫mx+4y=10−mx+my=4

\Leftrightarrow ∫y=5m+2x=−m+8m+2∫x=−m+8m+2y=5m+2

b. vì x >0 , y>0 \Rightarrow ∫y=5m+2>0x=−m+8m+2>0∫x=−m+8m+2>0y=5m+2>0

\Rightarrow ∫−m+8>0m+2>0∫m+2>0−m+8>0

\Rightarrow ∫m<8m>−2∫m>−2m<8

\Rightarrow -2<m<8 

\Rightarrow m ={ -1;0;1;2;3;4;5;6;7}

c, y = −m+8m+2−m+8m+2 = -1 + 10m+210m+2

hệ có nghiệm x.y nguyên dương \Leftrightarrow m+2 là ước nguyên dương của 5 

\Leftrightarrow m+2 = 1 ; 5

m+2 = 1 \Rightarrow m = -1

m+2 = 5 \Rightarrow m =3

20 tháng 1 2018

ở câu c sao y lại bằng như vậy

Giải các hệ phương trình sau bằng phương pháp thế:a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)Bài giảia) Từ phương trình \(x-y=3\Rightarrow x=3+y\)Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được:  \(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)                                       ...
Đọc tiếp

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\hept{\begin{cases}x-y=3\\3x-4y=2\end{cases}}\)

b) \(\hept{\begin{cases}7x-3y=5\\4x+y=2\end{cases}}\)

b) \(\hept{\begin{cases}x+3y=-2\\5x-4y=11\end{cases}}\)

Bài giải

a) Từ phương trình \(x-y=3\Rightarrow x=3+y\)

Thay \(x=3+y\)vào phương trình \(3x-4y=2\)ta được: 

 

\(3\left(3+y\right)-4y=2\Leftrightarrow9+3y-4y=2\)

                                          \(\Leftrightarrow-y=-7\Leftrightarrow y=7\)

Thay \(y=7\) vào \(x=3\) ta được: 

\(x=3+7=10\)

Vậy: Hệ phương trình có nghiệm: \(\left(10;7\right)\)

b) Từ phương trình \(4x+y=2\Rightarrow y=2-4x\)

Thay \(y=2-4x\)vào phương trình \(7x-3y=5\)ta được:

\(7x-3\left(2-4x\right)=5\Leftrightarrow7x-6+12x=5\)

                                             \(\Leftrightarrow19x=11\Leftrightarrow x=\frac{11}{19}\)

Thay \(x=\frac{11}{19}\)vào \(y=2-4x\)ta được \(y=2-4.\frac{11}{19}=2-\frac{44}{19}=-\frac{6}{19}\)

Vậy: Hệ phương trình có nghiệm \(\left(\frac{11}{19};-\frac{6}{11}\right)\)

c) Từ phương trình \(x+3y=-2\Rightarrow x=-2-3y\)

Thay \(x=-2-3x\)vào phương trình \(5x-4y=11\)ta được

\(5\left(-2-3y\right)-4y=11\Leftrightarrow-10-15y-4y=11\)

                                                    \(\Leftrightarrow-19=21\Leftrightarrow y=-\frac{21}{19}\)

Thay \(y=-\frac{21}{19}\)vào \(x=-2-3y\)ta được \(x=-2-3\left(-\frac{21}{19}\right)=-2+\frac{69}{19}=\frac{25}{19}\)

Vậy: Hệ phương trình có nghiệm: \(\left(\frac{25}{19};-\frac{21}{19}\right)\)

1
21 tháng 1 2018

-guể viết lại làm gì man?

23 tháng 3 2020

a) Thay m vào phương trình, ta có:

\(\hept{\begin{cases}\sqrt{2}\times x+4y=10-\sqrt{2}\\x+\sqrt{2}\times y=6\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}x+4y=10-\sqrt{2}\\x=6-\sqrt{2}y\end{cases}}\)

Thay giá trị đã có của x vào phương trình

\(\sqrt{2}\times\left(6-\sqrt{2}y\right)+4y=10-\sqrt{2}\)

\(\Rightarrow y=5-\frac{7\sqrt{2}}{2}\)

Thay giá trị của y vào phương trình:

\(x=6-\sqrt{2}\times\left(5-\frac{7\sqrt{2}}{2}\right)\)

\(\Rightarrow x=13-5\sqrt{2}\)

19 tháng 3 2017

b)

\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{ab}{a+b+2c}+\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}\le\dfrac{1}{4}\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)+\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}+\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\dfrac{ab}{4\left(a+c\right)}+\dfrac{bc}{4\left(a+c\right)}\right]+\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)

\(\Rightarrow VT\le\dfrac{ab+bc}{4\left(a+c\right)}+\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{b\left(a+c\right)}{4\left(a+c\right)}+\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)

\(\Rightarrow VT\le\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

19 tháng 3 2017

c lm hộ t bài số hqua t ms đăng nx đi

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây.