Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a chia cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5
\(\Rightarrow\)a + 1 \(⋮\)4,5,6
nên a + 1 \(⋮\) BCNN ( 4,5,6 )
\(\Rightarrow\)a + 1 \(⋮\)60
vì a + 1 \(⋮\)60 \(\Rightarrow\)a + 1 - 300 \(⋮\)60 hay a - 299 \(⋮\)60 ( 1 )
a \(⋮\)13 \(\Rightarrow\)a - 13 . 23 \(⋮\)13 hay a - 299 \(⋮\)13 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a - 299 \(⋮\)BCNN ( 60 ; 13 ) = 780
vậy dạng chung của a là : a = 780k + 299 ( k thuộc N )
1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5
\(\Rightarrow\)c phải là 5
Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b
\(\Rightarrow\)A có thể là 1955 hoặc là 9155
a: 4 dư 3 =>a+1 chia hết cho 4
a:5 dư 4 =>a+1 chia hết cho 5
a:6 dư 5 => a+1 chia hết cho 6
suy ra a+1 là bội chung của 4, 5,6 mà BCNN của 4,5,6 là 60
=> a+1 là bội của 60
=>a+1 E(0,60,120,180,240,300,....)
=>a E (-1,59.119,179,239,299,.....)
mà 200<a<33=>a=239,299
( E là thuộc bạn nhé)
Lời giải:
Theo đề thì $a-3\vdots 4; a-4\vdots 5; a-5\vdots 6$
$\Rightarrow a+1\vdots 4,5,6$
$\Rightarrow a+1=BC(4,5,6)$
$\Rightarrow a+1\vdots BCNN(4,5,6)$
$\Rightarrow a+1\vdots 60$
$\Rightarrow a=60k-1$ với $k$ tự nhiên.
Mà $a\vdots 13$
$\Rightarrow 60k-1\vdots 13$
$\Rightarrow 60k+12\vdots 13$
$\Rightarrow 12(5k+1)\vdots 13$
$\Rightarrow 5k+1\vdots 13$
$\Rightarrow 5k+1-26\vdots 13$
$\Rightarrow 5k-25=5(k-5)\vdots 13$
$\Rightarrow k-5\vdots 13$
$\Rightarrow k=13m+5$ với $m$ tự nhiên.
Khi đó: $a=60k-1=60(13m+5)-1=780m+299$