Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh moi bn vao link nay dang ky roi tra loi minigame nha : https://alfazi.edu.vn/question/5b7768199c9d707fe5722878
a, x4 - 3x3 - x + 3
= (x4 - x) - (3x3 - 3)
= x(x3 - 1) - 3(x3 - 1)
= (x - 3)(x3 - 1)
b, x2 - x - 12
= x2 - x - 16 + 4
= (x2 - 16) - (x - 4)
= (x2 - 42) - (x - 4)
= (x + 4)(x - 4) - (x - 4)
= (x + 4 - 1)(x - 4)
= (x + 3)(x - 4)
c, x2 - 7x + 12
= x2 - 3x - 4x + 12
= (x2 - 3x) - (4x - 12)
= x(x - 3) - 4(x - 3)
= (x - 4)(x - 3)
d, x2 - 2x - 8
= x2 - 4x + 2x - 8
= (x2 - 4x) + (2x - 8)
= x(x - 4) + 2(x - 4)
= (x + 2)(x - 4)
5, x2 - 10x + 21
= x2 - 3x - 7x + 21
= (x2 - 3x) - (7x - 21)
= x(x - 3) - 7(x - 3)
= (x - 7)(x - 3)
f, x7 - x2 - 1
= t không bt
b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)
\(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c, \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)
\(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)
= \(\left(x^2+x-2\right)\left(x+2\right)\)
a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)
\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)
\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
b,c có ng lm rồi
d)\(2x^4-3x^3-7x^2+6x+8\)
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)
\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
phần còn lại bạn tự lo nhé
a, Ta có : \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
=> \(\frac{3\left(2x-1\right)}{15}-\frac{5\left(x-2\right)}{15}=\frac{x+7}{15}\)
=> \(3\left(2x-1\right)-5\left(x-2\right)=x+7\)
=> \(6x-3-5x+10-x-7=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
b, Ta có : \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
=> \(\frac{3\left(x+3\right)}{6}-\frac{2\left(x-1\right)}{6}=\frac{x+5}{6}+\frac{6}{6}\)
=> \(3\left(x+3\right)-2\left(x-1\right)=x+5+6\)
=> \(3x+9-2x+2-x-5-6=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(\frac{2\left(x+5\right)}{3}+\frac{x+12}{2}-\frac{5\left(x-2\right)}{6}=\frac{x}{3}+11\)
=> \(\frac{4\left(x+5\right)}{6}+\frac{3\left(x+12\right)}{6}-\frac{5\left(x-2\right)}{6}=\frac{2x}{6}+\frac{66}{6}\)
=> \(4\left(x+5\right)+3\left(x+12\right)-5\left(x-2\right)=2x+66\)
=> \(4x+20+3x+36-5x+10-2x-66=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
\(e)\) \(\left|2x-3\right|=x-1\)
Ta có :
\(\left|2x-3\right|\ge0\)\(\left(\forall x\inℚ\right)\)
Mà \(\left|2x-3\right|=x-1\)
\(\Rightarrow\)\(x-1\ge0\)
\(\Rightarrow\)\(x\ge1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=x-1\\2x-3=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-x=-1+3\\2x+x=1+3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\3x=4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=\frac{4}{3}\left(tm\right)\end{cases}}}\)
Vậy \(x=2\) hoặc \(x=\frac{4}{3}\)
Chúc bạn học tốt ~
\(f)\) \(\left|x-5\right|-5=7\)
\(\Leftrightarrow\)\(\left|x-5\right|=12\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=12\\x-5=-12\end{cases}\Leftrightarrow\orbr{\begin{cases}x=17\\x=-7\end{cases}}}\)
Vậy \(x=17\) hoặc \(x=-7\)
Chúc bạn học tốt ~
\(x^8+x^4+1\)
\(=\left(x^8+2x^4+1\right)-x^4\)
\(=\left(x^4+1\right)^2-x^4\)
\(=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)
\(=\left(x^4-x^2+1\right)\left(x^4+2x^2-x^2+1\right)\)
\(=\left(x^4-x^2+1\right)[\left(x^2+1\right)^2-x^2]\)
\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)
Bài1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
Ta có:
\(\left(-8\right)^9=-2^{27}\)
\(\left(-32\right)^5=\left(-8.4\right)^5=-2^{27}.2^{10}\)
Vì \(-2^{27}.10< -2^{27}\) nên \(\left(-8\right)^9>\left(-32\right)^5\)
Các câu sau tương tự
Bài2:
\(a,2\left|x-1\right|-3x=7\)
+)Xét \(x\ge1\Rightarrow\left|x-1\right|=x-1\)
Do đó:
\(2\left(x-1\right)-3x=7\\ \Leftrightarrow2x-2-3x=7\\ \Leftrightarrow-x=9\\ \Leftrightarrow x=-9\left(loại\right)\)
+)Xét \(x< 1\Rightarrow\left|x-1\right|=1-x\)
Do đó:
\(2\left(1-x\right)-3x=7\\ \Leftrightarrow2-2x-3x=7\\ \Leftrightarrow-5x=5\\ x=-1\left(chon\right)\)
Vậy x=-1
Câu b tương tự
Bài 1:
\(a,\left(-8\right)^9\) và \(\left(-32\right)^5\)
\(\left(-8\right)^9=\left[\left(-2\right)^3\right]^9=\left(-2\right)^{27}\)
\(\left(-32\right)^5=\left[\left(-2\right)^5\right]^5=\left(-2\right)^{25}\)
\(\left(-2\right)^{27}< \left(-2\right)^{25}\)
\(\Rightarrow\left(-8\right)^9< \left(-32\right)^5\)
\(b,2^{21}\) và \(3^{14}\)
\(2^{21}=\left(2^3\right)^7\)
\(3^{14}=\left(3^2\right)^7\)
\(2^3< 3^2\)\(\Rightarrow2^{21}< 3^{14}\)
\(c,12^8\) và \(8^{12}\)
\(12^8=\left(12^2\right)^4=144^4\)
\(8^{12}=\left(8^3\right)^4=512^4\)
\(144^4< 512^4\)\(\Rightarrow12^8< 8^{12}\)
\(d,\left(-5\right)^{39}\) và \(\left(-2\right)^{91}\)
\(\left(-5\right)^{39}=\left[\left(-5\right)^3\right]^{13}\)
\(\left(-2\right)^{91}=\left[\left(-2\right)^7\right]^{13}\)
\(\left(-5\right)^3>\left(-2\right)^7\)\(\Rightarrow\left(-5\right)^{39}>\left(-2\right)^{91}\)
Bài 2:
\(a,2.\left|x-1\right|-3x=7\)
\(\left|x-1\right|=\dfrac{7+3x}{2}\)
Ta có 2 trường hợp:
Th1:\(x-1=\dfrac{7-3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{7+3x}{2}\)
\(\Rightarrow2x-2=7+3x\)
\(2x-3x=7+2\)
\(-x=9\Rightarrow x=-9\)
Th2:\(x+1=-\dfrac{7+3x}{2}\)
\(\dfrac{2x-2}{2}=\dfrac{-7-3x}{2}\)
\(\Rightarrow2x-2=-7-3x\)
\(2x+3x=-7+2\)
\(5x=-5\Rightarrow x=-1\)
Vậy \(x\in\left\{-9;-1\right\}\)
\(b,\left|5x-3\right|=\left|7-x\right|\)
Ta có: Th1: \(\left|7-x\right|=7-x\) khi \(7-x\ge0\)\(\Rightarrow x\le7\)
\(5x-3=7-x\)
\(5x+x=7+3\)
\(6x=10\Rightarrow x=\dfrac{10}{6}=\dfrac{5}{3}\)( thoả mãn )
vì x thoả mãn \(x\le7\)\(\Rightarrow\) th1 thoả mãn x
Ta có: Th2: \(\left|7-x\right|=-\left(7-x\right)\) khi \(7-x< 0\Rightarrow x>7\)
\(5x-3=-\left(7-x\right)\)
\(5x-3=-7+x\)
\(5x-x=-7+3\)
\(4x=-4\Rightarrow x=-1\) ( loại )
Vì x thoả mãn \(x>7\) mà \(x=-1\Rightarrow\)th2 loại
\(x^8+x^4+1=\left(x^8+2x^4+1\right)-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
câu b thì tương tự câu này
\(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
câu cuối cũng giống câu này
\(x^8+x^4+1\)
\(\text{Phân tích đa thức thành nhân tử :}\)
\(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
Lát làm tiếp
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
( 4 x 5 + 7 x 2 ) . ( - 3 x 3 ) = 4 x 5 . ( - 3 x 3 ) + 7 x 2 . ( - 3 x 3 ) = - 12 x 8 – 21 x 5
Đáp án cần chọn là: D