K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

xin fb chj ;-;

6 tháng 8 2020

2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)

ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0

\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1

vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)

\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1

\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0

vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)

8 tháng 9 2019

ĐK: \(x\ne\frac{k\pi}{2}\)

pt<=> \(8\sin x-\frac{4}{\sin x}=\frac{3}{\cos x}-\frac{3}{\sin x}\)

<=> \(4.\frac{2\sin^2x-1}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)

\(\Leftrightarrow4.\frac{\sin^2x-\cos^2x}{\sin x}=3.\frac{\sin x-\cos x}{\sin x.\cos x}\)

\(\Leftrightarrow4.\left(\sin x+\cos x\right)\left(\sin x-\cos x\right)=3\frac{\sin x-\cos x}{\cos x}\)

\(\Leftrightarrow\orbr{\begin{cases}\sin x-\cos x=0\left(1\right)\\4\left(\sin x+\cos x\right)=\frac{3}{\cos x}\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=0\) ( tự giải nhé)

(2) \(\Leftrightarrow4\sin x.\cos x+4\cos x.\cos x=3\)

\(\Leftrightarrow2\sin2x+2\cos2x+2=3\)

\(\Leftrightarrow\sin2x+\cos2x=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{2}\cos\left(2x+\frac{\pi}{4}\right)=\frac{1}{2}\)Tự giải nhé!

NV
22 tháng 8 2020

5.

\(\Leftrightarrow sin\left(2cosx\right)=1\)

\(\Leftrightarrow2cosx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow cosx=\frac{\pi}{4}+k\pi\)

Do \(-1\le cosx\le1\Rightarrow-1\le\frac{\pi}{4}+k\pi\le1\)

\(k\in Z\Rightarrow k=0\)

\(\Rightarrow cosx=\frac{\pi}{4}\)

\(\Leftrightarrow x=\pm arccos\left(\frac{\pi}{4}\right)+k2\pi\)

NV
22 tháng 8 2020

3.

\(\Leftrightarrow sin2x+1=2\left(\frac{1-cos2x}{2}\right)\)

\(\Leftrightarrow sin2x+cos2x=0\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow2x+\frac{\pi}{4}=k\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

4. ĐKXĐ; ...

\(\Leftrightarrow\frac{sinx.cos2x}{cosx.sin2x}+1=0\)

\(\Leftrightarrow sinx.cos2x+cosx.sin2x=0\)

\(\Leftrightarrow sin3x=0\)

\(\Leftrightarrow3sinx-4sin^3x=0\)

\(\Leftrightarrow3-4sin^2x=0\)

\(\Leftrightarrow3-2\left(1-cos2x\right)=0\)

\(\Leftrightarrow cos2x=-\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)