K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(\sqrt{x^2+x+2}=\frac{3x^2+3x+2}{3x+1}\)

\(pt\Leftrightarrow\sqrt{x^2+x+2}-2=\frac{3x^2+3x+2}{3x+1}-2\)

\(\Leftrightarrow\frac{x^2+x+2-4}{\sqrt{x^2+x+2}+2}=\frac{3x^2-3x}{3x+1}\)

\(\Leftrightarrow\frac{x^2+x-2}{\sqrt{x^2+x+2}+2}-\frac{3x^2-3x}{3x-1}=0\)

\(\Leftrightarrow\frac{'x-1''x+2'}{\sqrt{x^2+x+2}-2}-\frac{3x'x-1'}{3x-1}=0\)

\(\Leftrightarrow'x-1''\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{3x}{3x+1}'=0\)

Ta dễ thấy rằng ; \(\frac{x+2}{\sqrt{x^2+x+2}+2}-\frac{3x}{3x+1}\) lớn hơn  \(0\forall x\ge-\frac{1}{3}\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

Vậy;....

Le Nhat Phuong cách quá xàm và ko đủ nghiệm

bình phương 2 vế lên thì phương trình trở thành:

3x3-4x2-x+2=0

dùng máy tính thì có no x=1;-2/3

10 tháng 7 2017

\(x^2-x-2=0\)

\(\Leftrightarrow x^2+x-2x-2=0\)

\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

11 tháng 7 2017

a, Giải phương trình \(x^2-x-2=0\)

\(=''-1''^2-4\times1\times''-2''=1+8\) lớn hơn \(0\)

\(\sqrt{\Delta}=\sqrt{9}=3\)

\(\Rightarrow x_1=-1;x_2=2\)

b, Vẽ đồ thị bảng số 

- Hàm số \(y=x^2\) 

- Hàm số \(y=x+2\)

+ Cho \(x=0\Rightarrow2\) được điểm A '' 0,2 ''

+ Cho \(x=2\Rightarrow y=0\) được điềm '' -2 ; 0 '' 

Đồi thị hàm số

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

7 tháng 11 2017

Ấy chết vòi 1 hết 12 tiếng vòi 2 hết 8 tiếng ^^

7 tháng 11 2017

bài này lớp 5 cũng có ở violimpic  

4 tháng 3 2020

2)

a)Thay m = 2 vào hệ, ta được :

HPT :\(\hept{\begin{cases}2x+4y=2+1\\x+\left(2+1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+4y=3\left(^∗\right)\\x+3y=2\left(^∗^∗\right)\end{cases}}\)

Lấy (*) trừ (**), ta được :
\(2x+4y-x-3y=3-2\)

\(\Leftrightarrow x+y=1\)(***)

Lấy (**) trừ (***), ta được :

\(\Leftrightarrow x+3y-x-y=2-1\)

\(\Leftrightarrow2y=1\)

\(\Leftrightarrow y=\frac{1}{2}\)

\(\Leftrightarrow x=1-\frac{1}{2}=\frac{1}{2}\)

Vậy với \(m=2\Leftrightarrow\left(x;y\right)\in\left\{\frac{1}{2};\frac{1}{2}\right\}\)

b) Thay \(\left(x;y\right)=\left(2;-1\right)\)vào hệ, ta được :

HPT :\(\hept{\begin{cases}2m-2m=m+1\\2-\left(m+1\right)=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m+1=0\\m+1=0\end{cases}}\)

\(\Leftrightarrow m=-1\)

Vậy với \(\left(x,y\right)=\left(2;-1\right)\Leftrightarrow m=-1\)

4 tháng 10 2019

a/ ĐKXĐ : \(x\ge0;x\ne1\)

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right):\frac{2}{x^2-2x+1}\)

\(=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right):\frac{2}{\left(x-1\right)^2}\)

\(=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)

\(=\frac{x-2\sqrt{x}+\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(x-1\right)^2}{2}\)

\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-1\right)}{2\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=-\sqrt{x}\left(x-1\right)\)

Vậy...

b/ Ta có :

\(P>0\)

\(\Leftrightarrow-\sqrt{x}\left(x-1\right)>0\)

\(\Leftrightarrow\sqrt{x}\left(x-1\right)< 0\)

\(\sqrt{x}\ge0\)

\(\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)

Kết hợp ĐKXĐ

Vậy \(0< x< 1\) thì P > 0

c/ Ta có :

\(x=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\) thỏa mãn \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x}=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

Thay vào P rồi bạn tự tính ra nhé :>

27 tháng 8 2019

Dat \(a=\sqrt[3]{65+x},b=\sqrt[3]{65-x}\)

Bien doi PT thanh \(a^2+4b^2=5ab\)

\(\Leftrightarrow a^2-5ab+4b^2=0\)

\(\Leftrightarrow\left(a^2-ab\right)-\left(4ab-4b^2\right)=0\)

\(\Leftrightarrow a\left(a-b\right)-4b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a=4b\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\sqrt[3]{65+x}=\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=65-x\)

\(\Leftrightarrow x=0\left(n\right)\)

\(\left(2\right)\Leftrightarrow\sqrt[3]{65+x}=4\sqrt[3]{65-x}\)

\(\Leftrightarrow65+x=64.65-64x\)

\(\Leftrightarrow65x=64.65-65\)

\(\Leftrightarrow x=63\left(n\right)\)

Vay nghiem cua PT la \(x=0,x=63\)