K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{\left(x-1\right)\left(-x+9\right)}-\sqrt{\left(2x-12\right)\left(x-1\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-\sqrt{9-x}-\sqrt{2x-12}\right)=0\)

giải nốt nhá

sai thfi thông cảm nha

24 tháng 8 2019

Có ai rảnh ko

24 tháng 8 2019

Toán lớp 5???

31 tháng 8 2015

phả là 10x chứ

đặt  2 căn đầu bằng a

bình phương a lên

 

6 tháng 7 2019

câu a

Học tại nhà - Toán - Bài 110035

6 tháng 7 2019

b,  ĐK \(x\ge-4\)

PT 

<=> \(\left(x-\sqrt{x+4}\right)+\left(\sqrt{2x^2-10x+17}-2x+3\right)=0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}+\frac{-2x^2+2x+8}{\sqrt{2x^2-10x+17}+2x-3}=0\)với \(x+\sqrt{x+4}\ne0\)

<=> \(\frac{x^2-x-4}{x+\sqrt{x+4}}-\frac{2\left(x^2-x-4\right)}{\sqrt{2x^2-10x+17}+2x-3}=0\)

<=> \(\orbr{\begin{cases}x^2-x-4=0\\\frac{1}{x+\sqrt{x+4}}-\frac{2}{\sqrt{2x^2-10x+17}+2x-3}=0\left(2\right)\end{cases}}\)

Giải (2)

=> \(2x+2\sqrt{x+4}=2x-3+\sqrt{2x^2-10x+17}\)

<=> \(\sqrt{2x^2-10x+17}=2\sqrt{x+4}+3\)

<=> \(2x^2-10x+17=4\left(x+4\right)+9+12\sqrt{x+4}\)

<=> \(x^2-7x-4=6\sqrt{x+4}\)

<=> \(\left(x-6\right)^2+5x-40=6\sqrt{6\left(x-6\right)-5x+40}\)

Đặt x-6=a;\(\sqrt{6\left(x-6\right)-5x+40}=b\)

=> \(\hept{\begin{cases}a^2+5x-40=6b\\b^2+5x-40=6a\end{cases}}\)

=> \(a^2-b^2+6\left(a-b\right)=0\)

<=> \(\orbr{\begin{cases}a=b\\a+b+6=0\end{cases}}\)

+ a=b

=> \(x-6=\sqrt{x+4}\)

=> \(\hept{\begin{cases}x\ge6\\x^2-13x+32=0\end{cases}}\)=> \(x=\frac{13+\sqrt{41}}{2}\)

+ a+b+6=0

=> \(x+\sqrt{x+4}=0\)(loại)

Vậy \(S=\left\{\frac{13+\sqrt{41}}{2};\frac{1+\sqrt{17}}{2}\right\}\)

8 tháng 11 2018

<=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2=5\)

mà \(\sqrt{3\left(x+1\right)^2+9}\ge3\)\(\sqrt{5\left(x^2-1\right)^2+4}\ge4\)\(2\left(x+1\right)^2\ge0\)với mọi x 

=>\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2+4}+2\left(x+1\right)^2\ge3+2+0=5\)

'=" xảy ra<=> x+1=0<=> x=-1