Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKXĐ: \(1\le x\leq 2\)
Ta có: \((\sqrt{2-x}+1)(\sqrt{x+3}-\sqrt{x-1})=4\)
\(\Leftrightarrow (\sqrt{2-x}+1).\frac{(x+3)-(x-1)}{\sqrt{x+3}+\sqrt{x-1}}=4\)
\(\Leftrightarrow (\sqrt{2-x}+1).\frac{4}{\sqrt{x+3}+\sqrt{x-1}}=4\Rightarrow \sqrt{2-x}+1=\sqrt{x+3}+\sqrt{x-1}\)
\(\Leftrightarrow (\sqrt{x+3}-2)+\sqrt{x-1}-(\sqrt{2-x}-1)=0\)
\(\Leftrightarrow \frac{x-1}{\sqrt{x+3}+2}+\sqrt{x-1}-\frac{1-x}{\sqrt{2-x}+1}=0\)
\(\Leftrightarrow \sqrt{x-1}\left(\frac{\sqrt{x-1}}{\sqrt{x+3}+2}+1+\frac{\sqrt{x-1}}{\sqrt{2-x}+1}\right)=0\)
Hiển nhiên biểu thức trong ngoặc lớn luôn lớn hơnm $0$
Do đó \(\sqrt{x-1}=0\Leftrightarrow x=1\) (thỏa mãn)
\(\Leftrightarrow\sqrt{4-\left(1-x\right)^2}=\sqrt{3}\)
\(\Leftrightarrow4-\left(1-x\right)^2=3\)
\(\Leftrightarrow4-\left(1-2x+x^2\right)-3=0\)
\(\Leftrightarrow4-1+2x-x^2-3=0\)
\(\Leftrightarrow-x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)
vay x=0 ; x=2
\(\sqrt{3x^2-5=2}\left(x\ge\sqrt{\frac{5}{3}}\right)\)
\(\Leftrightarrow3x^2-5=4\)
\(\Leftrightarrow3x^2=9\Leftrightarrow x^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\left(tm\right)\\x=-\sqrt{3}\left(kotm\right)\end{cases}}\)
vay \(x=\sqrt{3}\)
\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\left(x\ge49\right)\)
\(\Leftrightarrow\sqrt{x-49}=2\Leftrightarrow x^2-98x+2401=4\)
\(\Leftrightarrow x^2-98x+2397=0\Leftrightarrow x^2-47x-51x+2397\)\(\Leftrightarrow x\left(x-47\right)-51\left(x-47\right)\Leftrightarrow\left(x-47\right)\left(x-51\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-51=0\\x-47=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=51\left(tm\right)\\x=47\left(kotm\right)\end{cases}}}\)
xay x=51
\(\sqrt{\frac{-6}{1+x}}=5\left(x< -1\right)\)
\(\Leftrightarrow\frac{36}{x^2+2x+1}=25\Leftrightarrow25x^2+50x+25=36\)
\(\Leftrightarrow25x^2+50x-11=0\Leftrightarrow25x^2-5x+55x-11\)
\(\Leftrightarrow5x\left(5x-1\right)+11\left(5x-1\right)\Leftrightarrow\left(5x-1\right)\left(5x+11\right)\)\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\5x+11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(kotm\right)\\x=\frac{-11}{5}\left(tm\right)\end{cases}}}\)
vay \(x=\frac{-11}{5}\)
nhung cau nay binh phuong len la xong
y 3 xem lai de bai
y 4,7 ko biet lam
1)
dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)
ta co b=2-a
a^3+b^3=x+1+7-x=8
a^3+b^3=a^3+b^3+3ab(a+b)
ab(a+b)=0
suy ra a=0 hoac b=0 hoac a=-b
<=> x=-1; x=7
a=-b
a^3=-b^3
x+1=x+7 (vo li nen vo nghiem)
cau B tuong tu
2)
tat ca cac bai tap deu chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so
dang nay co 2 cach
C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)
B^3=10-9B
B=1 cach nay nhanh nhung kho nhin
C2 dat an
\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)
de thay B=a+b
a^3+b^3=10
ab=-3
B^3=10-9B
suy ra B=1
tuong tu giai cac cau con lai.
Bài 1:
a. Đặt \(a=\sqrt[3]{x+1}\); \(b=\sqrt[3]{7-x}\). Ta có:
\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)
\(\Leftrightarrow x=-1\)hoặc \(x=7\)
đằng giữa 2 căn là dấu cộng nha ~