Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-6x+11\)
\(\Rightarrow A=x^2-6x+9+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 3
Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5\right)-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)
\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)
Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)
\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)
Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)
c) \(C=5x-x^2\)
\(\Rightarrow C=-\left(x^2-5x\right)\)
\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)
Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)
Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
a )\(A=2x^2-8x-10=2\left(x^2-4x-5\right)=2\left[\left(x^2-4x+4\right)-9\right]\)
\(=2\left[\left(x-2\right)^2-9\right]=2\left(x-2\right)^2-18\)
Vì \(2\left(x-2\right)^2\ge0\forall x\) nên \(A=2\left(x-2\right)^2-18\ge-18\forall x\)
Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy GTNN của A là - 18 tại x = 2
b ) \(B=9x-3x^2=-3\left(x^2-3x\right)=-3\left[\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)
\(=-3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]=-3\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\cdot3\left(x-\dfrac{3}{2}\right)^2\le0\forall x\) nên \(B=-3\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\le\dfrac{27}{4}\)
Dấu "=" xảy ra <=> \(-3\left(x-\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{3}{2}\)
Vậy GTLN của B là \(\dfrac{27}{4}\) tại x = \(\dfrac{3}{2}\)
\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{5}{2}^2\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\le\frac{1}{\frac{31}{4}}=\frac{4}{31}\)
Dấu "=" xảy ra khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)
Vậy GTLN của \(D=\frac{4}{31}\)tại \(x=-\frac{5}{2}\)
\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)
D đạt giá trị lớn nhất khi và chỉ khi \(x+\frac{5}{2}=0\leftrightarrow x=\frac{-5}{2}\)
Vậy \(D=\frac{4}{31}\leftrightarrow x=\frac{-5}{2}\)
b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất
=> 1/x-5=-1
=>x-5=-1
=>x=4
Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)
Suy ra Min B = 20 <=> x = 1/3
a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\)
=> \(\left(x^2-5x\right)^2-36\ge-36\)
Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\)
=> \(-\left(3x+1\right)+20\le20\)
Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)
a)\(A=4x^2+4x+11\)
\(=4x^2+4x+1+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu = khi \(x=\frac{-1}{2}\)
Vậy MinA=10 khi \(x=\frac{-1}{2}\)
b)\(B=3x^2-6x+1\)
\(=3x^2-6x+3-2\)
\(=3\left(x^2-2x+1\right)-2\)
\(=3\left(x-1\right)^2-2\ge-2\)
Dấu = khi \(x=1\)
Vậy MinB=-2 khi \(x=1\)
c)\(C=x^2-2x+y^2-4y+6\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
\(x^2+2x+3\\ =x^2+2x+1+2\\ =\left(x^2+2x+1\right)+2\\ =\left(x+1\right)^2+2\\ Do\text{ }\left(x+1\right)^2\ge0\forall x\\ \Rightarrow\left(x+1\right)^2+2\ge2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\\ \text{Vậy }GTNN\text{ của biểu thức là }2\text{ }khi\text{ }x=-1\)
\(A=x^2+2x+3\)
\(A=x^2+2x+1+2\)
\(A=\left(x^2+2x+1\right)+2\)
\(A=\left(x+1\right)^2+2\)
Vậy GTNN của A=2 khi x=-1
Ta có : A = x2 - 6x + 15
= x2 - 6x + 9 + 6
= (x - 3)2 + 6 \(\ge6\forall x\in R\)
Vậy Amin = 6 khi x = 3.
B = 9 x - 3 x 2 = 3 3 x - x 2 = 3 9 / 4 - 9 / 4 + 2 . 3 / 2 x - x 2
= 3 9 / 4 - 9 / 4 - 3 / 2 x + x 2
= 3 9 / 4 - 3 / 2 x - x 2 = 27 / 4 - 3 / 2 - x 2
Vì 3 / 2 - x 2 ≥ 0 với mọi x
⇒ B = 27/4 − 3 / 2 - x 2 ≤ 27/4 do đó giá trị lớn nhất của B bằng 27/4 tại x = 3/2