K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

B = 9 x - 3 x 2 = 3 3 x - x 2 = 3 9 / 4 - 9 / 4 + 2 . 3 / 2 x - x 2

= 3 9 / 4 - 9 / 4 - 3 / 2 x + x 2

3 9 / 4 - 3 / 2 x - x 2 = 27 / 4 - 3 / 2 - x 2

Vì 3 / 2 - x 2  ≥ 0 với mọi x

⇒ B = 27/4 −  3 / 2 - x 2  ≤ 27/4 do đó giá trị lớn nhất của B bằng 27/4 tại x = 3/2

a) \(A=x^2-6x+11\)

\(\Rightarrow A=x^2-6x+9+2\)

\(\Rightarrow A=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 3

Vậy \(MIN\) \(A=2\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5\right)-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)

\(\Rightarrow B=2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\)

Ta có: \(2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)\ge0\forall x\)

\(\Rightarrow2\left(x^2+2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)-\dfrac{23}{2}\ge-\dfrac{23}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{-5}{2}\)

Vậy \(MIN\) \(B=\dfrac{-23}{2}\Leftrightarrow x=\dfrac{-5}{2}\)

c) \(C=5x-x^2\)

\(\Rightarrow C=-\left(x^2-5x\right)\)

\(\Rightarrow C=-\left(x^2-2\cdot\dfrac{5}{2}\cdot x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(\Rightarrow C=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\)

Ta có: \(-\left(x-\dfrac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)

Vậy \(MAX\) \(C=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)

29 tháng 4 2017

a )\(A=2x^2-8x-10=2\left(x^2-4x-5\right)=2\left[\left(x^2-4x+4\right)-9\right]\)

\(=2\left[\left(x-2\right)^2-9\right]=2\left(x-2\right)^2-18\)

\(2\left(x-2\right)^2\ge0\forall x\) nên \(A=2\left(x-2\right)^2-18\ge-18\forall x\)

Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy GTNN của A là - 18 tại x = 2

b ) \(B=9x-3x^2=-3\left(x^2-3x\right)=-3\left[\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}\right]\)

\(=-3\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]=-3\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

\(\cdot3\left(x-\dfrac{3}{2}\right)^2\le0\forall x\) nên \(B=-3\left(x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\le\dfrac{27}{4}\)

Dấu "=" xảy ra <=> \(-3\left(x-\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{3}{2}\)

Vậy GTLN của B là \(\dfrac{27}{4}\) tại x = \(\dfrac{3}{2}\)

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{5}{2}^2\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\le\frac{1}{\frac{31}{4}}=\frac{4}{31}\)

Dấu "=" xảy ra khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)

Vậy GTLN của \(D=\frac{4}{31}\)tại \(x=-\frac{5}{2}\)

10 tháng 12 2017

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

D đạt giá trị lớn nhất khi và chỉ khi \(x+\frac{5}{2}=0\leftrightarrow x=\frac{-5}{2}\)

Vậy \(D=\frac{4}{31}\leftrightarrow x=\frac{-5}{2}\)

4 tháng 6 2018

b)\(C=\frac{5x-19}{x-4}=\frac{5x-20+1}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)

Để C đạt giá trị nhỏ nhất => 1/x-5 phải đạt giá trị nhỏ nhất

=> 1/x-5=-1

=>x-5=-1

=>x=4

Giá trị nhỏ nhất của C là : 5 - 1 = 4 <=> x = 4

24 tháng 11 2019

a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)

\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)

\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)

b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)

\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)

\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)

24 tháng 11 2019

c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\le-1\)

\(\Rightarrow V\ge\frac{1}{-1}=-1\)

Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)

d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)

\(=-\left(4x^2-8x+4\right)-1\)

\(=-\left(2x-2\right)^2-1\le-1\)

\(\Rightarrow X\ge\frac{2}{-1}=-2\)

Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

5 tháng 9 2016

a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)

\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)

Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)

Suy ra Min B = 20 <=> x = 1/3

5 tháng 9 2016

a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)

\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)

\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)

Vì \(\left(x^2-5x\right)^2\ge0\)

=> \(\left(x^2-5x\right)^2-36\ge-36\)

Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)

Vì \(-\left(3x+1\right)^2\le0\)

=> \(-\left(3x+1\right)+20\le20\)

Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

5 tháng 11 2017

\(x^2+2x+3\\ =x^2+2x+1+2\\ =\left(x^2+2x+1\right)+2\\ =\left(x+1\right)^2+2\\ Do\text{ }\left(x+1\right)^2\ge0\forall x\\ \Rightarrow\left(x+1\right)^2+2\ge2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\\ \text{Vậy }GTNN\text{ của biểu thức là }2\text{ }khi\text{ }x=-1\)

5 tháng 11 2017

\(A=x^2+2x+3\)

\(A=x^2+2x+1+2\)

\(A=\left(x^2+2x+1\right)+2\)

\(A=\left(x+1\right)^2+2\)

Vậy GTNN của A=2 khi x=-1

18 tháng 9 2017

Ta có : A = x2 - 6x + 15 

= x2 - 6x + 9 + 6

= (x - 3)2 + 6 \(\ge6\forall x\in R\)

Vậy Amin = 6 khi x = 3.