Tính giá trị của các biểu thức sau:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

a) {132 - [116- (16 - 8)]:2}.5

= [132 - (116 - 8): 2] .5

= (132 - 108 : 2). 54

= (132 - 54).5

= 78.5 = 390

b) 36: {136 : 200 - (12+ 8. 20)]}

= 36: {336 : [200 - ( 12 + 160)]}

= 36 : [336 : ( 200 - 172)

= 36 : ( 336 : 28) = 3

c) 86 - [15. (64 - 39): 75+11] 

= 86 - (15.25 : 75 + 11) 

= 86 - ( 5 + 11) 

= 70

d)  55 - [ 49 - ( 2 3 . 17 - 2 3 . 14 ) ]

= 55 - 49 - 2 3 . 3

= 55- ( 49 - 24)

= 30

14 tháng 10 2024

Bạn ơi ở chỗ trước số 200 có dấu này [mà

a) \(B=3+3^2+3^3+...+3^{120}\)

\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)

\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)

Suy ra B chia hết cho 3 (đpcm)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)

\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)

\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)

\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)

Suy ra B chia hết cho 4 (đpcm)

c) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)

\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)

\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)

\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)

Suy ra B chia hết cho 13 (đpcm)

26 tháng 12 2021

bài này dễ mà bạn

26 tháng 12 2021

(-4;-3;-2;-1;0;1;2;3;4)

Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha

a=1135/23-((167/32+330/23)

a=1135/23-14401/736

a=953/32

15 tháng 8 2020

Bài đây tính nhanh nhé ミ★ʟuғғʏ☆мũ☆ʀơм★彡 chứ không phải quy đồng lên đâu :)

a) \(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}-14\frac{8}{23}\)

\(A=\left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}=35-5\frac{7}{32}=35-\frac{167}{32}=\frac{953}{32}\)

b) \(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}:\frac{-7}{3}+2\frac{3}{7}\)

\(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}\cdot\frac{-3}{7}+2\frac{3}{7}\)

\(B=\frac{-3}{7}\left(\frac{5}{9}+\frac{4}{9}\right)+2\frac{3}{7}\)

\(B=\frac{-3}{7}+\frac{17}{7}=\frac{14}{7}=2\)

c) \(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right)\cdot\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{2}{8}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)

\(C=6\frac{3}{8}\cdot\frac{4}{5}=\frac{51}{8}\cdot\frac{4}{5}=\frac{51}{2}\cdot\frac{1}{5}=\frac{51}{10}\)

d) \(D=\frac{54\cdot107-53}{53\cdot107+54}=\frac{\left(53+1\right)\cdot107-53}{53\cdot107+54}=\frac{53\cdot107+107-53}{53\cdot107+54}=\frac{53\cdot107+54}{53\cdot107+54}=1\)

5 tháng 8 2018

a) \(16^{12}=4^{2\cdot12}=4^{24}\)

\(64^8=4^{4\cdot8}=4^{32}\)

=>\(64^8>16^{12}\)

5 tháng 8 2018

b) 

\(5^{23}=5.5^{22}\)

=> \(6.5^{22}>5^{23}\)

18 tháng 8 2020

a) \(\frac{-8}{18}-\frac{15}{27}=\frac{-4}{9}-\frac{5}{9}=\frac{-4-5}{9}=\frac{-9}{9}=-1\)

b) \(\frac{19}{24}-\left(-\frac{1}{2}+\frac{7}{24}\right)\)

\(=\frac{19}{24}+\frac{1}{2}-\frac{7}{24}=\left(\frac{19}{24}-\frac{7}{24}\right)+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}=1\)

c) \(\frac{3^{11}\cdot11+3^{11}\cdot21}{3^9\cdot2^5}=\frac{3^{11}\left(11+21\right)}{3^9\cdot2^5}\)

\(=\frac{3^{11}\cdot32}{3^9\cdot32}=3^2=9\)

18 tháng 8 2020

a) \(-\frac{8}{18}-\frac{15}{27}=-\frac{4}{9}-\frac{5}{9}=\frac{-9}{9}=-1\)

b) \(\frac{19}{24}-\left(-\frac{1}{2}+\frac{7}{24}\right)\)

\(=\frac{19}{24}+\frac{12}{24}-\frac{7}{24}=\frac{24}{24}=1\)

c) \(P=\frac{3^{11}.11+3^{11}.21}{3^9.2^5}\)

\(P=\frac{3^{11}.\left(11+21\right)}{2^9.2^5}=\frac{3^{11}.32}{2^9.32}=3^2=9\)

d) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}=\frac{99}{50}\)