Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{hc}{\lambda}=A+\frac{1}{2}mv^2_{0max}\left(\text{∗}\right)\)
+Khi chiếu bức xạ có \(\lambda_1:v_{0max1}=\sqrt{\frac{2\left(\frac{hc}{\lambda_1}-A\right)}{m}}\left(1\right)\)
+Khi chiếu bức xạ có \(\lambda_2:v_{0max2}=\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\left(2\right)\)
Từ \(\text{(∗)}\) ta thấy lhi \(\lambda\) lớn thì \(v_{0max}\) nhỏ
\(\Rightarrow v_{0max1}=2,5v_{0max2}\left(\lambda_1<\lambda_2\right)\)
\(\Leftrightarrow\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}=2,5\sqrt{\frac{2\left(\frac{hc}{\lambda_2}-A\right)}{m}}\)
\(\Leftrightarrow\frac{hc}{\lambda_1}-A=6,25\left(\frac{hc}{\lambda_2}-A\right)\) với \(A=\frac{hc}{\lambda_0}\)
\(\Rightarrow\lambda_0=\frac{5,25\lambda_1\lambda_2}{6,25\lambda_1-\lambda_2}=\frac{5,25.0,4.0,6}{6,25.0,4-0.6}=0,663\mu m\)
1) Công thoát của êlectron ra khỏi bề mặt catôt
\(A=\frac{hc}{\lambda_0}=3,025.10^{-19}J\)
2) Vận tốc ban cực đại của electron
\(V_{max}=\sqrt{\frac{2hc}{m}\left(\frac{1}{\lambda}-\frac{1}{\lambda_0}\right)}=5,6.10^5m\text{/}s\)
3) Hiệu điện thế hãm để không có electron về catôt.
\(v_h=\frac{hc}{e}\left(\frac{1}{\lambda}-\frac{1}{\lambda_0}\right)=0,91V\)
Nhiệt lượng miếng kim loại tỏa ra:
Q1 = m1 . c1 . (t1 – t) = 0,4 . c . (100 – 20)
Nhiệt lượng nước thu vào:
Q2 = m2 . c2 . (t – t2) = 0,5 . 4190 . (20 – 13)
Nhiệt lượng tỏa ra bằng nhiệt lượng thu vào:
Q1 = Q2
0,4 . c . (100 – 20) = 0,5 . 4190 . (20 – 13)
C = 458 J/kg.K
Kim loại này là thép.
Câu hỏi liên quan đến ý này: http://edu.olm.vn/hoi-dap/question/15397.html
- Khối lượng nước bị bay hơi mà không ngưng tụ lại trên nước đá là: \(\Delta m = m_0+m-m_1\)
- Nhiệt lượng cần cung cấp để làm lượng nước trên bay hơi là: \(Q_1=\Delta m. L=(m_0+m-m_1).L\)
- Nhiệt lượng cần cung cấp để làm tan đá là: \(Q_2=m.\lambda\)
- Nhiệt lượng cần cung cấp để m gam nước tăng nhiệt đến nhiệt độ sôi là: \(Q_3=m.c.t_s\)
Vậy nhiệt lượng mà bếp cung cấp cho bình nước là: \(Q=Q_1+Q_2+Q_3=(m_0+m-m_1).L+m.\lambda+m.c.t_s\)
Ta có : ADCT : \(I_0=U_0\sqrt{\frac{C}{L}}\) ( Từ công thức tính năng lượng điện từ trong mạch \(W=W_{Cmax}=W_{Lmax}\)
Nghĩa là :\(\frac{L.\left(I_0\right)^2}{2}=\frac{C.\left(U_0\right)^2}{2}\))
\(\Rightarrow I_0=5.\sqrt{\frac{8.10^{-9}}{2.10^{-4}}}=\text{0.0316227766}\left(A\right)\)\(\Rightarrow I=\frac{I_0}{\sqrt{2}}=\text{0.022360677977}\left(A\right)\)
Mà \(P=r.I^2\Rightarrow r=\frac{6.10^{-3}}{5.10^{-4}}=12\left(\Omega\right)\Rightarrow D\)
Toàn bộ năng lượng đến trong 1s là:
\(E_1=N_1\frac{hc}{\lambda_1}\)
Năng lượng hạt phát ra trong 1s là :
\(E_2=N_2\frac{hc}{\lambda_2}\)
mặt khác ta có
\(E_2=H.E_1\)
\(N_2\frac{hc}{\lambda_2}=HN_1\frac{hc}{\lambda_1}\)
\(\frac{N_2}{\lambda_2}=H\frac{N_1}{\lambda_1}\)
\(N_2=H\frac{N_1\lambda_2}{\lambda_1}=2.4144.10^{13}hạt\)
Suất điện động hiệu dụng là \(E = \dfrac{{{E_0}}}{{\sqrt 2 }} = \dfrac{{220\sqrt 2 }}{{\sqrt 2 }} = 220V\).
1Bình chọn giảm
Trong trường hợp ban đầu giotj thủy ngân nằm chính giữa nên thể tích 2 phần bằng nhau
Tỉ số này không đổi do khí vẫn được giữ cố định trong bình.
Khi cùng tăng nhiệt độ của 2 bình lên 1 lượng nhỏ thì tỉ số giua 2 nhiệt độ thay đổi dẫn đến tỉ lệ thể tích thay đổi. Bên nào thể tích nhỏ hơn thì là do giotj thủy ngân dịch về phía đó.
Tỷ số giua 2 nhiệt độ phụ thuộc (T1 > T2 hay không)
Nêú biết bên nào có nhiệt độ cao hơn sẽ biết thủy ngân dịch về bên nào
Đáp án C