Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức Anh-xtanh: \(hf = A+ eU_h\)
\(\frac{hc}{\lambda_1} = A+ eU_{h1}\) => \(eU_{h1} = \frac{hc}{\lambda_1} - A = hc(\frac{2}{\lambda_0} - \frac{1}{\lambda_0}) = \frac{hc}{\lambda_0}.\)
\(\frac{hc}{\lambda_2} = A+ eU_{h2}\)=> \(eU_{h2} = \frac{hc}{\lambda_2} - A = hc(\frac{3}{\lambda_0} - \frac{1}{\lambda_0}) = 2.\frac{hc}{\lambda_0}.\)
=> \(\frac{U_{h1}}{U_{h2}} = \frac{1}{2}\)
=> Chọn đáp án C.
câu hỏi của bn có ở đây nhá Câu hỏi của HOC24 - Học và thi online với HOC24
Hệ thức Anh -xtanh trong hiện tượng quang điện
\(hf = A_1+W_{đ1}.(1)\)
\(hf = A_2+W_{đ2}.(2)\)
Ta có \(A_1 = \frac{hc}{\lambda_{01}}; A_2 = \frac{hc}{\lambda_{02}}\)
\( \lambda_{02} = 2\lambda_{01}=> A_1 = 2A_2. \)
Trừ vế với vế của phương trình (1) cho phương trình (2) ta có
=> \(0= A_1-A_2+W_{đ 1}-W_{đ 2}.\)
=> \(W_{đ2}=( A_1-A_2)+W_{đ1} = A_2+W_{đ1}\)
Mà \(A_2 >0\) => \(W_{đ2} > W_{đ1}\).
Động năng cực đại của electron quang điện khi đập vào anôt là
\(W_{max}^d=W_{0max}^d+eU_{AK}\)
Khi chiếu chùm bức xạ vào kim loại thì để động năng ban đầu cực đại khi electron thoát khỏi bề mặt kim loại lớn nhất thì bước sóng của bức xạ chiếu vào sẽ tính theo bức xạ nhỏ hơn => Chọn bức xạ λ = 282,5 μm.
Động năng ban đầu cực đại của electron quang điện khi thoát khỏi bề mặt kim loại là
\(W_{0max}^d= h\frac{c}{\lambda}-A= 6,625.10^{-34}.3.10^8.(\frac{1}{282,5.10^{-9}}-\frac{1}{660.10^{-9}})= 4,02.10^{-19}J.\)
=> Động năng cực đại của electron quang điện đập vào anôt là
\(W_{max}^d=W_{0max}^d+eU_{AK}= 4,02.10^{-19}+1,6.10^{-19}.1,5 = 6,42.10^{-19}J.\)
Hệ thức Anh -xtanh
\(hf = A+ eU_h\)
=> \(eU_h = hf - A= 6,625.10^{-34}.3.10^8.(\frac{1}{0,33.10^{-6}}-\frac{1}{0,66.10^{-6}})= 3,01.10^{-19}J.\)
=> \(U_h = \frac{3,01.10^{-19}}{1,6.10^{-19}}=1,88 V.\)
=> \(U_{AK} \leq -1,88V\)
Đáp án: D