K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

31 tháng 3 2017

a) Xét hàm số y = f(x)=12x4−3x2+32f(x)=12x4−3x2+32 (C) có tập xác định: D = R

y’ = 2x3 – 6x = 2x(x2 – 3)

y’ = 0 ⇔ x = 0, x = ±√3

Bảng biến thiên:

Đồ thị hàm số:

b)

y’’ = 6x2 – 6x

y’’ = 0 ⇔ 6x2 – 6x = 0 ⇔ x = ± 1

y’(-1) = 4, y’’(1) = -4, y(± 1) = -1

Tiếp tuyến của (C) tại điểm (-1, -1) là : y = 4(x+1) – 1= 4x+3

Tiếp tuyến của (C) tại điểm (1, -1) là: y = -4(x-1) – 1 = -4x + 3

c) Ta có: \(x^4-6x^2+3=m\)\(\Leftrightarrow\dfrac{x^4}{2}-3x^2+\dfrac{3}{2}=\dfrac{m}{2}\).

Số nghiệm của (1) là số giao điểm của (C) và đường thẳng (d) : \(y=\dfrac{m}{2}\).

Dễ thấy:

m < -6: ( 1) vô nghiệm

m = -6 : (1) có 2 nghiệm

-6 < m < 3: (1) có 4 nghiệm

m = 3: ( 1) có 3 nghiệm

m > 3: (1) có 2 nghiệm

 

2 tháng 4 2017

Ta có:

f(x) = ax2 – 2(a + 1)x + a + 2 = (x – 1)(ax – a- 2) nên phương trình f(x) = 0 luôn có hai nghiệm thực là:

x = 1, x=a+2ax=a+2a

Theo định lí Vi-et, tổng và tích của các nghiệm đó là:

S=2a+2a,P=a+2aS=2a+2a,P=a+2a

1. Khảo sát sự biến thiên và vẽ đồ thị hàm số S=2a+2a=2+2aS=2a+2a=2+2a

- Tập xác định : (-∞, 0)∪ (0, +∞)

- Sự biến thiên: S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞)S′=−2a2<0,∀a∈(−∞,0)∪(0,+∞) nên hàm số nghịch biến trên hai khoảng (-∞, 0) và (0, +∞)

- Cực trị: Hàm số không có cực trị

- Giới hạn tại vô cực và tiệm cận ngang

lima→+∞S=lima→+∞(2+2a)=2lima→−∞S=lima→−∞(2+2a)=2lima→+∞⁡S=lima→+∞⁡(2+2a)=2lima→−∞⁡S=lima→−∞⁡(2+2a)=2

Vậy S = 2 là tiệm cận ngang

- Giới hạn vô cực và tiệm cận đứng:

lima→0+S=lima→0+(2+2a)=+∞lima→0−S=lima→0−(2+2a)=−∞lima→0+⁡S=lima→0+⁡(2+2a)=+∞lima→0−⁡S=lima→0−⁡(2+2a)=−∞

Vậy a = 0 là tiệm cận đứng.

- Bảng biến thiên:

Đồ thị hàm số:

Đồ thị không cắt trục tung, cắt trục hoành tại a = -1

2) Khảo sát sự biến thiên và vẽ đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a

Tập xác định: D = R\{0}

S′=−2a2<0,∀a∈DS′=−2a2<0,∀a∈D

lima→0−S=−∞lima→0−⁡S=−∞⇒ Tiệm cận đứng: a = 0

lima→±∞S=1lima→±∞⁡S=1⇒ Tiệm cận ngang: S = 1

Đồ thị hàm số:

Ngoài ra: đồ thị hàm số P=a+2a=1+2aP=a+2a=1+2a có thể nhận được bằng cách tịnh tiến đồ thị S=2a+2a=2+2aS=2a+2a=2+2a dọc theo trục tung xuống phía dưới 1 đơn vị.



NV
21 tháng 11 2018

1.a/ \(\left\{{}\begin{matrix}3^{x+1}>0\\5^{x^2}>0\end{matrix}\right.\) \(\forall x\) \(\Rightarrow\) pt vô nghiệm

b/ Mình làm câu b, câu c bạn tự làm tương tự, 3 câu này cùng dạng

Lấy ln hai vế:

\(ln\left(3^{x^2-2}.4^{\dfrac{2x-3}{x}}\right)=ln18\Leftrightarrow ln3^{x^2-2}+ln4^{\dfrac{2x-3}{x}}-ln18=0\)

\(\Leftrightarrow\left(x^2-2\right)ln3+\dfrac{2x-3}{x}2ln2-ln\left(2.3^2\right)=0\)

\(\Leftrightarrow x^3ln3-2x.ln3+4x.ln2-6ln2-x.ln2-2x.ln3=0\)

\(\Leftrightarrow x^3ln3-4x.ln3+3x.ln2-6ln2=0\)

\(\Leftrightarrow x.ln3\left(x^2-4\right)+3ln2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2ln3+2x.ln3+3ln2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\Rightarrow x=2\\x^2ln3+2x.ln3+3ln2=0\left(1\right)\end{matrix}\right.\)

Xét (1): \(\left(x^2+2x\right)ln3=-3ln2\Leftrightarrow x^2+2x=\dfrac{-3ln2}{ln3}=-3log_32\)

\(\Leftrightarrow\left(x+1\right)^2=1-3log_32=log_33-log_38=log_3\dfrac{3}{8}< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

\(\Rightarrow\) pt có nghiệm duy nhất \(x=2\)

2/ Pt đã cho tương đương:

\(2017^{sin^2x}-2017^{cos^2x}=cos^2x-sin^2x\)

\(\Leftrightarrow2017^{sin^2x}+sin^2x=2017^{cos^2x}+cos^2x\)

Xét hàm \(f\left(t\right)=2017^t+t\) (\(0\le t\le1\))

\(\Rightarrow f'\left(t\right)=2017^t.ln2017+1>0\) \(\forall t\) \(\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow sin^2x=cos^2x\Rightarrow cos^2x-sin^2x=0\Rightarrow cos2x=0\)

\(\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Thế k=0; k=1 ta được 2 nghiệm thuộc đoạn đã cho là \(x=\dfrac{\pi}{4};x=\dfrac{3\pi}{4}\)

\(\Rightarrow\) tổng nghiệm là \(T=\dfrac{\pi}{4}+\dfrac{3\pi}{4}=\pi\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

31 tháng 3 2017

Số nghiệm của các phương trình đã cho chính là số giao điểm của đồ thị hàm số y = f(x) ở vế trái của phương trình cới trục hoành ở câu a), b) và với đường thẳng y = -1 ở câu c).

a) Xét hàm số y = x3 – 3x2 + 5 . Tập xác định : R.

y' = 3x2 - 6x = 3x(x - 2); y' = 0 ⇔ x = 0,x = 2.

Bảng biến thiên:

Đồ thị như hình bên.

Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .

b) Xét hàm số y = -2x3 + 3x2 - 2 . Tập xác định : R.

y' = -6x2 + 6x = -6x(x - 1); y' = 0 ⇔ x = 0,x = 1.

Đồ thị như hình bên. Từ đồ thị ta thấy phương trình đã cho có nghiệm duy nhất .

c) Xét hàm số y = f(x) = 2x2 - 2x4. Tập xác định : R.

y' = 4x - 4x3 = 4x(1 - x2); y' = 0 ⇔ x = 0,x = ±1.

Bảng biến thiên:

Đồ thị hàm số f(x) và đường thẳng y = -1 như hình bên.

Từ đồ thị ta thấy phương trình đã cho có hai nghiệm phân biệt.

29 tháng 3 2016

a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :

\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)

Ta có :

\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x

Do đó \(f\left(x\right)\) đồng biến trên R

Mặt khác

f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình

b) Phương trình tương đương với

\(2^x\left(2-2^x\right)=x-1\)

Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình

- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)\(x-1\)

phương trình vô nghiệm

- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)\(x-1\)

phương trình đã cho có 1 nghiệm duy nhất là x=1

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit