K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét tứ giác AEFD, ta có:

AB // CD (gt) hay AE // FD

AE = 1/2 AB (gt)

FD = 1/2 CD (gt)

Suy ra: AE = FD

Tứ giác AEFD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

AD = AE = 1/2 AB . Vậy tứ giác AEFD là hình thoi.

* Xét tứ giác AECF, ta có: AE // CF (gt)

AE = 1/2 AB (gt)

CF = 1/2 CD (gt)

Suy ra: AE = CF

Tứ giác AECF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau).

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là...
Đọc tiếp

Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.

  a. Các tứ giác AEFD, AECF là hình gì? Vì sao?

  b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.

  c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?

Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.

  a. Chứng minh tứ giác ANDM là hình chữ nhật.

  b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?

  c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.

Bài 6. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.

  a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.

  b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?

 

  c. Cho BC = 4cm, tính chu vi tứ giác AEBM.

1
18 tháng 12 2022

Bài 6:

a: Xét ΔABC có BD/BA=BM/BC

nên MD//AC

=>ME vuông góc với AB

=>E đối xứng M qua AB

b: Xét tứ giác AEBM có

D là trung điểm chung của AB và EM

MA=MB

Do đó; AEBM là hình thoi

Xét tứ giac AEMC có

AE//MC

AE=MC

Do đó: AEMC là hình bình hành

c: BM=BC/2=2cm

=>CAEBM=2*4=8cm

30 tháng 5 2017

A D F M E B C N

a) Tứ giác AEFD là hình thoi, tứ giác AECF là hình bình hành (tự chứng minh).

b) Tứ giác AECF là hình bình hành nên EN // FM. Tứ giác AECF là hình bình hành nên EM // FN. AEFD là hình thoi nên AF \(\perp\) DE.

Hình bình hành EMFN có \(\widehat{M}=90^o\) nên là hình chữ nhật.

c) Hình chữ nhật EMFN là hình vuông

\(\Leftrightarrow\) ME = MF \(\Leftrightarrow\) DE = AF (vì DE = 2ME, AF = 2MF)

\(\Leftrightarrow\) Hình thoi AEFD có hai đường chéo bằng nhau

\(\Leftrightarrow\) AEFD là hình vuông \(\Leftrightarrow\) \(\widehat{A}=90^o\).

\(\Leftrightarrow\) Hình bình hành ABCD là hình chữ nhật.

Như vậy, hình chữ nhật EMFN là hình vuông nếu ABCD là hình chữ nhật.

3 tháng 11 2018

Bạn kham khảo nha

Ôn tập : Tứ giác

18 tháng 10 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

5 tháng 11 2017

Giúp với

5 tháng 11 2017

Cho hình bình hành ABCD có AB = 2AD. Gọi E là trung điểm của AB,F trung điểm của CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE 

a) Tứ giác AECF là hình gì ? Vì sao ?

b) Tứ giác AEFD là hình gì ? Vì sao ?

30 tháng 11 2015

+) Vì ABCD là hình bình hành

=> AB // CD và AB = CD

hay AE // DF và AE = DF 

=> AEFD là hình bình hành

+) Vì ABCD là hình bình hành

=> AE // FC và AE = FC

=> AECF là hình bình hành

30 tháng 11 2015

Ta có:

\(E\) là trung điểm của  \(AB\left(gt\right)\) nên  \(EA=EB=\frac{1}{2}AB\)

\(F\) là trung điểm của  \(CD\left(gt\right)\)  nên  \(FC=FD=\frac{1}{2}CD\) 

Mà  \(AB=CD\)  (cạnh đối hình bình hành  \(ABCD\) )

nên  \(EA=FD\)   \(\left(1\right)\)

Vì  \(AB\text{//CD}\)  (theo tính chất cạnh đối hình bình hành  \(ABCD\) ) nên  \(EA\text{//FD}\)   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)  suy ra, tứ giác  \(AEFD\) là hình bình hành  \(\left(3\right)\)

Lại có: 

 \(AB=2AD\left(gt\right)\Rightarrow AD=\frac{1}{2}AB\) 

Do đó:   \(EA=AD\left(=\frac{1}{2}AB\right)\)  \(\left(4\right)\)

Từ  \(\left(3\right);\left(4\right)\)  suy ra, \(AEFD\)  là hình thoi.