K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì AB ⊥ KB nên AE ⊥ KB

Lại có: AB = BE (tính chất đối xứng tâm)

Suy ra: KA = KE (tính chất đường trung trực)     (3)

Ta có: IO = IO’ (gt)

IA = IK (chứng minh trên)

Tứ giác AOKO’ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Suy ra: OK // O’A và OA // O’K

CA ⊥ O’A (vì CA là tiếp tuyến của đường tròn (O’))

OK // O’A (chứng minh trên)

Suy ra: OK ⊥ AC

Khi đó OK là đường trung trực của AC

Suy ra: KA = KC (tính chất đường trung trực)     (4)

DA ⊥ OA (vì DA là tiếp tuyến của đường tròn (O))

O’K // OA (chứng minh trên)

Suy ra: O’K ⊥ DA

Khi đó O’K là đường trung trực của AD

Suy ra: KA = KD (tính chất đường trung trực)     (5)

Từ (3), (4) và (5) suy ra: KA = KC = KE = KD

Vậy bốn điểm A, C, E, D cùng nằm trên một đường tròn.3

24 tháng 6 2017

Ví trí tương đối của hai đường tròn

21 tháng 8 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi H là giao điểm của AB và OO’

Vì OO’ là đường trung trực của AB nên OO’ ⊥ AB tại H

Ta có: HA = HB

I là trung điểm của OO’ nên IH ⊥ AB     (1)

Trong tam giác ABK, ta có:

HA = HB (chứng minh trên)

IA = IK (tính chất đối xứng tâm)

Suy ra IH là đường trung bình của tam giác ABK

Suy ra IH // BK     (2)

Từ (1) và (2) suy ra: AB ⊥ KB

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

1 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: MN ⊥ OM (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: QP ⊥ OP tại P

Vậy PQ là tiếp tuyến của đường tròn (O).

Ta có: MN ⊥ O’N (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: QP ⊥ O’Q tại Q