K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)

Suy ra tam giác AMN cân tại A

Mặt khác AO là đường phân giác của góc MAN (tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác AMN (tính chất tam giác cân)

Vậy OA ⊥ MN.

24 tháng 6 2017

a) ta có : AN = AM (tính chất tiếp tuyến)

\(\Rightarrow\) tam giác AMN cân tại A

OA là tia phân giác cũng là đường cao

\(\Rightarrow\) OA \(\perp\) MN (đpcm)

24 tháng 6 2017

b) đặc H là giao điểm của MN và AO

ta có MH = HN (OA \(\perp\) MN \(\Rightarrow\) H là trung điểm MN)

mà CO = CN = R

\(\Rightarrow\) OH là đường trung bình của tam giác MNC

\(\Rightarrow\) OH // MC \(\Leftrightarrow\) MC // OA (đpcm)

Giải thích các bước giải:

a/ Chứng minh: OA vuông góc MN.

Áp dụng tính chất 2 tiếp tuyến cắt nhau ta có AM=ANAAM=AN⇒A thuộc trung trực của MN.

Lại có OM=ON=ROOM=ON=R⇒O thuộc trung trực của MN

OA⇒OA là trung trực của MN.

OAMN⇒OA⊥MN (1).

b/ Vẽ đường kính NOC. Chứng minh rằng: MC//AO.

Xét tam giác MNC có: MO=OC=ON=RMC=12NCMO=OC=ON=R⇒MC=12NC

ΔMNC⇒ΔMNC vuông tại M (Định lí đường trung tuyến)

MNMC⇒MN⊥MC (2).

Từ (1) và (2) => MC // AO.

c/ Tính độ dài các cạnh của tam giác AMN biết OM = 3 cm, OA = 5 cm.

Áp dụng định lí Pytago trong tam giác vuông OAM có:

AM2=OA2OM2AM2=5232=16AM=4(cm)=ANAM2=OA2−OM2AM2=52−32=16AM=4(cm)=AN

Gọi H là giao điểm của MN và OA.

MNAO⇒MN⊥AO tại H.

Áp dụng hệ thức lượng trong tam giác vuông OAM, đường cao MH có:

OM2=OH.OA32=OH.5OH=95(cm)AH=OAOH=165OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165

MH2=OH.AH=95.165MH=125(cm)⇒MH2=OH.AH=95.165⇒MH=125(cm)

OA là trung trực của MN (cmt) H⇒H là trung điểm của MN

MN=2MH=245(cm)⇒MN=2MH=245(cm).

image
 
22 tháng 8 2021

a) Tam giác MAN cân tại A có OA là tia phân giác nên nó cũng trùng với đường cao. Vì vậy OAMN.
b) Do AM, AN là hai tiếp tuyến cùng xuất phát từ một điểm nằm ngoài đường tròn nên AO là phân giác góc ^MAN và I là điểm chính giữa của cung MN. Từ đó ta có:

.

 IM là phân giác góc ^NMA.

 I là tâm đường tròn nội tiếp tam giác MNA.
c) Nếu tứ giác OMIN là hình thoi thì OM=ON=MI=IN=R.
Suy ra các tam giác OMI, ONI là tam giác đều. Vì vậy ^MON=^MOA+^AON=60o+60o=120o.
Suy ra ^MAN=180o^MON=60o.
Ngược lại giả sử ^MAN=60o. Suy ra ^MON=180o^MAN=120o.
Có OA là tia phân giác của góc MON nên ^MOA=^AON=120o:2=60o.
Suy ra các tam giác MOA, AON là tam giác đều hay tứ giác OMIN là hình thoi.

Vậy ^MAN=60o thì tứ giác OMIN là hình thoi.

23 tháng 9 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác MNC nội tiếp trong đường tròn (O) có NC là đường kính nên góc (CMN) = 90 °

Suy ra: NM ⊥ MC

Mà OA ⊥ MN (chứng minh trên)

Suy ra: OA // MC

7 tháng 7 2016

A B M C N D O E

a) Ta có : \(\widehat{ANC}=\widehat{ACM}=\frac{1}{2}\) sđ cung MC ; Góc CAN là góc chung của hai tam giác CAM và tam giác NAC

\(\Rightarrow\Delta CAM~\Delta NAC\left(g.g\right)\) \(\Rightarrow\frac{CM}{CN}=\frac{AC}{AN}\) (1)

Tương tự với tam giác BAM và tam giác NAB ta cũng có \(\widehat{MBA}=\widehat{ANB}=\frac{1}{2}\)sđ cung BM ; Góc NAB là góc chung của hai tam giác

\(\Rightarrow\Delta BAM~\Delta NAB\left(g.g\right)\Rightarrow\frac{AB}{AN}=\frac{BM}{BN}\) (2)

Mà AB = AC (vì AB và AB là hai tiếp tuyến của (O))

Do đó, kết hợp (1) và (2) ta có \(\frac{CM}{CN}=\frac{BM}{BN}\Rightarrow BM.CN=BN.CM\)

 

7 tháng 7 2016

OK ^^

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

10 tháng 12 2020

a) Xét (O) có 

AM là tiếp tuyến có M là tiếp điểm(gt)

AN là tiếp tuyến có N là tiếp điểm(gt)

Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AM=AN(cmt)

nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OM=ON(cmt)

nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

hay AO⊥MN(đpcm)

b) Xét (O) có 

ΔMNC nội tiếp đường tròn(C,M,N∈(O))

NC là đường kính

Do đó: ΔMNC vuông tại M(Định lí)

⇒MN⊥MC

Ta có: MN⊥MC(cmt)

MN⊥AO(cmt)

Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)

c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:

\(OA^2=OM^2+MA^2\)

\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)

hay \(AM=\sqrt{16}=4cm\)

mà AM=AN(cmt)

nên AN=4cm

Gọi H là giao điểm của MN và AO

mà MN⊥AO tại trung điểm của MN

nên H là trung điểm của MN và MH⊥AO tại H

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:

\(MH\cdot AO=MO\cdot MA\)

\(\Leftrightarrow MH\cdot5=4\cdot3=12\)

hay MH=2,4cm

mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)

nên \(MN=2\cdot2.4=4.8cm\)

Chu vi tam giác AMN là: 

\(C=AM+AN+MN=5+5+4.8=14.8cm\)

18 tháng 12 2016

Câu c) Điều cần CM tương đương \(\frac{MC}{MA}=\frac{MA}{MD}\)

Tức là cần CM \(MC.MD=MA^2\)

Ta đã có \(MC.MD=MO^2\) và \(MO=MA\) do tam giác \(AMO\)cân (bạn thử chứng minh 2 góc đáy bằng nhau ấy)