K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!! Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng: 1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z 2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2 3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5 4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D....
Đọc tiếp

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!!

Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng:

1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z

2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2

3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5

4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D. 1-\(\frac{5}{9}\)x3

Câu 2: Biểu thức nào không phải là đơn thức, chọn câu trả lời đúng:

1. A.\(\frac{7}{2}\) B. 2xy3 C. 7+2x2y D. -3

2. A. 2+5xy2 B. \(\frac{3}{4}\)x2y5 C. 3x2y D. (x+2y)z

3. A. 5-x B. xy C. 3x2y D. -35.5

4. A. 13.3 B. (5-9x2)y C.5x2y D. 88

Câu 3: Cho biết phần hệ số, phần biến của đơn thức 2,5x2y, chọn câu trả lời đúng:

A. Phần hệ số: 2,5; phần biến: x2y B. Phần hệ số: 2,5; phần biến: x2

C. Phần hệ số: 2; phần biến:x2y D. Phần hệ số: 2,5; phần biến: y

Câu 4: Tính giá trị của biểu thức 2,5x2y tại x=1 và y=-1

A. -1,5 B. -2,5 C. 1,5 D. 2,5

Câu 5: Tính tích của hai đơn thức \(\frac{1}{4}\)x3y và -2x3y5, rồi tìm bậc cùa đơn thức thu được, chọn câu trả lời đúng:

A. \(\frac{-1}{2}\)x6y6, bậc bằng 12 B. \(\frac{-1}{2}\)x6y6, bậc bằng 6

C. -2x6y6, bậc bằng 12 C. -2x6y6, bậc bằng 6

Câu 6: Thu gọn đơn thức 6x.(-8x2y).(9x3y2z) rồi chỉ ra phần hệ số và bậc của chúng, chọn câu trả lời đúng:

A. Hệ số: 243, bậc bằng 10 B. Hệ số: -243, bậc bằng 10

C. Hệ số: 243, bậc bằng 12 D. Hệ số: -243, bậc bằng 12

2
28 tháng 4 2020

Câu 1:

1)B.\(-3xy\)

2)A.\(\frac{-5}{9}x^2y\) và B.\(\frac{x}{y}\)

3)C.\(\frac{2}{xy}\) và D.\(-5\)

4)C.\(9^2yz\)

Câu 2:

1)C.\(7+2x^2y\)

2)A.\(2+5xy^2\) và D.\(\left(x+2y\right)z\)

3)A.\(5-x\) và D.\(-35.5\)

4)A.\(13.3\) và B.\(\left(5-9x^2\right)y\)

Câu 3:A.Phần hệ số:2,5;phần biến:\(x^2y\)

Câu 4:B.\(-2,5\)

Câu 5:A.\(-\frac{1}{2}x^6y^6\) ,bậc bằng 12

Câu 6:B.Hệ số:-243,bậc bằng 10

Nhớ tick cho mình nha!

27 tháng 4 2020

nhìn có vẻ không rõ nên các bạn ráng giúp mình nha!!!!

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

27 tháng 7 2017

\(\text{Câu 1: }\\ \text{Theo bài ra ta có : }x+y-z=10\\ \dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{2}=\dfrac{4y}{12}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\\ \dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{3y}{12}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\\ \text{Từ }\left(1\right)\text{ và }\left(2\right)\text{ suy ra : }\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\\ \text{ Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=2\Rightarrow x=16\\\dfrac{y}{12}=2\Rightarrow y=24\\\dfrac{z}{15}=2\Rightarrow z=30\end{matrix}\right.\\ \text{Vậy }x=16\\ y=24\\ z=30\)

\(\text{Câu 2 : }\\ \text{Ta có : }\dfrac{x}{2}=\dfrac{y}{5}\\ \Rightarrow\left(\dfrac{x}{2}\right)^2=\left(\dfrac{y}{5}\right)^2=\dfrac{x}{2}\cdot\dfrac{y}{5}=\dfrac{xy}{2\cdot5}=\dfrac{7+3}{10}=\dfrac{10}{10}=1\\ \Rightarrow\left\{{}\begin{matrix}\left(\dfrac{x}{2}\right)^2=1\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\\\left(\dfrac{y}{5}\right)^2=1\Rightarrow\dfrac{y}{5}=1\Rightarrow y=5\end{matrix}\right.\\ \text{Vậy }x=2\\ y=5\)

27 tháng 7 2017

Câu 3 : \(\dfrac{\text{Giải}}{ }\)

Gọi số học sinh 4 khối \(6,7,8,9\) lần lượt là \(a;b;c;d\) \(\left(a;b;c;d\in N\text{*}\right)\) \(\left(em\right)\)

Theo bài ra ta có : \(b-d=70\)

\(a;b;c;d\) tỉ lệ với \(9;8;7;6\) \(\Rightarrow\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{7}=\dfrac{d}{6}=\dfrac{b-d}{8-6}=\dfrac{70}{2}=35\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{9}=35\Rightarrow a=315\\\dfrac{b}{8}=35\Rightarrow b=280\\\dfrac{c}{7}=35\Rightarrow c=245\\\dfrac{d}{6}=35\Rightarrow d=210\end{matrix}\right.\)

\(\text{Vậy }a=315\\ b=280\\ c=245\\ d=210\)

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

13 tháng 9 2017

a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

=> x=8,y=6,z=18

b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)

=> x=-27,y=-21,z=-9

c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

=> x=165,y=20,z=25

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

4 tháng 9 2017

a, -(-2) là sao bạn

b, \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)

=>x=42,y=28,z=20

c, \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}=\frac{z^2}{36}\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

=>x=12 hoặc x=-12

y=15 hoặc y=-15

z=18 hoặc -18

4 tháng 9 2017

Minh viet nham cau a

cau a la; x;y:z=3:5:(-2) va 5.x-y+3.z=-16

6 tháng 8 2016

a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:

x/4  =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2

=> x=2.4=8

     y=2.3=6

     z=2.9=18

6 tháng 8 2016

a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

ADTCCDTSBN, ta có: 

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(y=2.3=6\)

\(z=2.9=18\)

b) Đề có nhầm lẫn j k nhỉ =.=

c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)

ADTCCDTSBN, ta có:

\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)

\(\Rightarrow x=-40:5=-8\)

\(y=-40:8=-5\)

\(z=-40:20=-2\)

21 tháng 12 2016

Theo đề bài ta có:

x/3=y/4=> x/15=y/20

x/5=z/6=> x/15= z/18

=> x/15=y/20=z/18 và x+y-z=3

Áp dụng ...........( tự làm nha)

 

21 tháng 12 2016

câu b bn tự làm nha

a) Đặt P(y)=0

⇔3y-6=0

⇔3y=6

hay y=2

Vậy: S={2}

Đặt N(x)=0

\(\Leftrightarrow\frac{1}{3}-2x=0\)

\(\Leftrightarrow2x=\frac{1}{3}\)

hay \(x=\frac{1}{3}:2=\frac{1}{3}\cdot\frac{1}{2}=\frac{1}{6}\)

Vậy: \(S=\left\{\frac{1}{6}\right\}\)

Đặt D(z)=0

\(z^3-27=0\)

\(\Leftrightarrow z^3=27\)

hay z=3

Vậy: S={3}

Đặt M(x)=0

\(x^2-4=0\)

\(\Leftrightarrow x^2=4\)

\(\Leftrightarrow x=\pm2\)

Vậy: S={2;-2}

Đặt C(y)=0

\(\Leftrightarrow\sqrt{2}y+3=0\)

\(\Leftrightarrow\sqrt{2}y=-3\)

\(\Leftrightarrow y=\frac{-3}{\sqrt{2}}=\frac{-3\sqrt{2}}{2}\)

Vậy: \(S=\left\{\frac{-3\sqrt{2}}{2}\right\}\)

b) Ta có: \(x^4\ge0\forall x\)

\(\Rightarrow x^4+1\ge1>0\forall x\)

hay Q(x) vô nghiệm(đpcm)