K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Ta thấy :

\(\left(m-1\right)x+3m-2=0\Leftrightarrow x=\frac{2-3m}{m-1}\left(m\ne1\right)\)

Để x ≥ 1 thì :

\(\frac{2-3m}{m-1}\ge1\Leftrightarrow m-1\le2-3m\)

\(\Leftrightarrow4m\le3\Leftrightarrow m\le\frac{3}{4}\)

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).

4 tháng 3 2022

m(m -3)x - 2(2x - 2) = m

(m2 - 3m . x ) + (-4x - 4) = m

-4xm2 + 12xm - 4x2 - 4m2 + 12m - 4x = m

-4x . (m2 + 12m - x - m2 + 12m) = m

-4x . [(m2 - m2) + (12 + 12) - x] = m

-4x . (24 - x) = m

-96x + 4x2 = m

x. (-96 + 4x) = m

(x + 4x) - 96 = m

5x - 96 = m

\(\rightarrow\)5x = 96 (1)

x = 19,2

\(\rightarrow\)5 . 19,2 - 96 = 0

m = 0

(do mình ko giỏi về mấy cái thể loại toán như này nên có thể làm sai mong bạn thông cảm)

a) Thay m=-4 vào phương trình mx-2x+3=0, ta được

\(-4x-2x+3=0\)

\(\Leftrightarrow-6x+3=0\)

\(\Leftrightarrow3-6x=0\)

\(\Leftrightarrow6x=3\)

hay \(x=\frac{1}{2}\)

Vậy: Khi m=-4 thì \(x=\frac{1}{2}\)

b) Thay x=2 vào phương trình mx-2x+3=0, ta được

\(m\cdot2-2\cdot2+3=0\)

\(\Leftrightarrow2m-1=0\)

hay 2m=1

\(m=\frac{1}{2}\)

Vậy: Khi \(m=\frac{1}{2}\) thì phương trình có nghiệm là x=2

8 tháng 2 2017

khai triển hằng đẳng thức và rút gọn đưa về phương trình sau:

\(x\left(3m^2-8m+4\right)=6m+3\)

để pt vô nghiệm thì: \(\hept{\begin{cases}3m^2-8m+4=0\\6m+3\ne0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3m^2-8m+4=0\\6m+3\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne-\frac{1}{2}\\\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}}\)\(\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)

Đáp án A