\(S=\left(\frac{1}{2}-1\right)\div\left(\frac{1}{3}-1\right)\div\left(\frac{1}{4}-1\right)\div.....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

Ta có S = ( 1/2 - 1) : ( 1/3 - 1) : (1/4 - 1) :... : ( 1/50 - 1)

S = -1/2 : ( -2/3) : ( -3/4) : ... : ( -49/ 50)

S= -1/2 x (-3/2) x ( -4/3) x ... x (-50/49)

S=  -1/2 x 1/3 x 50

S= -25/3

30 tháng 4 2017

cho mình thêm câu trả lời đi

30 tháng 10 2016

a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)

\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)

\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)

 

30 tháng 10 2016

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)

\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)

Ta tính tổng \(1+2+3+...+100\\ \) trước

Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)

Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)

Thay số vào ta có được:

\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)

2 tháng 4 2017

B=\(\left(1-\dfrac{1}{1+2}\right)\). \(\left(1-\dfrac{1}{1+2+3}\right)\).....\(\left(1-\dfrac{1}{1+2+...+100}\right)\)

B=\(\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot...\cdot\left(1-\dfrac{1}{\left(1+100\right)\cdot100:2}\right)\)

B=\(\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{101\cdot100:2-1}{101\cdot100:2}\)

B=\(\dfrac{4}{6}\cdot\dfrac{10}{12}\cdot...\cdot\dfrac{\left(101.100:2-1\right).2}{101.100}\)

B=\(\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}\cdot...\cdot\dfrac{99.102}{100.101}\)

B=\(\dfrac{1.2.3.4.....99}{3.4.5....100}.\dfrac{4.5.6.....102}{3.4.5.....101}\)

B=\(\dfrac{2}{100}\).\(\dfrac{102}{3}\)

B=\(\dfrac{17}{25}\)

27 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

27 tháng 1 2017

chết phần a quên nhân vs 1/3