Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)
\(A=\dfrac{1}{2\cdot2}+\dfrac{1}{3\cdot3}+...+\dfrac{1}{100\cdot100}\)
\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}< 1\)
\(\Rightarrow A< 1\)
Ta có:\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(2A=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)
\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\right)\)
\(A=1-\dfrac{1}{2^{100}}< 1\)
Vậy A<1
\(A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2014}}\\ 3A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\\ 3A-A=\left(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2014}}\right)\\ 2A=3-\dfrac{1}{3^{2014}}\\ A=\left(3-\dfrac{1}{3^{2014}}\right):2\\ A=3:2-\dfrac{1}{3^{2014}}:2\\ A=\dfrac{3}{2}-\dfrac{1}{3^{2014}\cdot2}< \dfrac{3}{2}\)
Vậy \(A< \dfrac{3}{2}\)
Ta có:\(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1+1-\dfrac{1}{100}< 2\)
\(\Rightarrow1+\dfrac{1}{2 ^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 2\)
\(B=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{1}-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
Ta thấy: \(\dfrac{99}{100}< 1\)
\(\Rightarrow B< 1\left(đpcm\right)\)
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1.2}\\\dfrac{1}{3^2}< \dfrac{1}{2.3}\\\dfrac{1}{4^2}< \dfrac{1}{3.4}\\\dfrac{1}{100^2}< \dfrac{1}{99.100}\end{matrix}\right.\)
\(\Rightarrow B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow B< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow B< 1-\dfrac{1}{100}\)
\(\Rightarrow B< 1\)
\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
=>2S=1-1/3^100
=>S=1/2-1/2*3^100<1/2