K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

đk: \(a>0;a\ne1\)

Ta có:

\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{a-\sqrt{a}+0}\right)\div\frac{\sqrt{a}+1}{a-1}\)

\(A=\left[\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\sqrt{a}}\right]\cdot\frac{a-1}{\sqrt{a}+1}\)

\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}-1}\right)\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(A=\frac{\sqrt{a}-1}{\sqrt{a}-1}\cdot\left(\sqrt{a}-1\right)\)

\(A=\sqrt{a}-1\)

Để \(A< 0\Leftrightarrow\sqrt{a}-1< 0\)

\(\Leftrightarrow\sqrt{a}< 1\)

\(\Rightarrow a< 1\)

Vậy khi \(0< a< 1\) thì A < 0

21 tháng 7 2019

a)

\(A=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\\ =\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\\ =\frac{\sqrt{a}-1}{\sqrt{a}}\)

b) Ta có: \(A=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)

Với mọi a>0 và a≠1 ta có \(\sqrt{a}>0\Leftrightarrow\frac{1}{\sqrt{a}}>0\)

\(\Rightarrow A=1-\frac{1}{\sqrt{a}}< 1\left(đpcm\right)\)

c)

\(A=1-\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\left(tm\right)\)

Vậy.......

22 tháng 7 2019

Cảm ơn bạn nhiều nha yeuyeu

17 tháng 11 2017

a, = \(\sqrt{a^2b^2.\left(1+\frac{1}{a^2b^2}\right)}\) = \(\sqrt{a^2b^2+1}\)

c, = \(\sqrt{\frac{a+ab}{b^4}}\) = \(\frac{\sqrt{a+ab}}{b^2}\)

k mk nha

17 tháng 11 2017

a, \(ab\sqrt{1+\frac{1}{a^2b^2}}\)

 \(ab\sqrt{1+\frac{1}{a^2b^2}}=ab\sqrt{\frac{1+a^2b^2}{a^2b^2}}=\frac{ab}{\left|ab\right|}\sqrt{1+a^2b^2}\)

\(=\hept{\begin{cases}\sqrt{1+a^2b^2}ĐK:ab>0\\-\sqrt{1+a^2b^2}ĐKab< 0\end{cases}}\)

b, \(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}\)

\(\sqrt{\frac{a}{b^3}+\frac{a}{b^4}}=\sqrt{\frac{a+ab}{b^4}}=\frac{1}{b^2}\sqrt{a+ab}\)

21 tháng 8 2016

a) \(=\frac{x^2-\sqrt{3^2}}{x+\sqrt{3}}=\frac{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)

21 tháng 8 2016

\(=\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}=a+\sqrt{a+1}\)

4 tháng 7 2017

a. \(\dfrac{x^2-3}{x+\sqrt{3}}=\dfrac{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)

11 tháng 8 2020

Có: \(A=\sqrt{\frac{1}{1^2}+\frac{1}{a^2}+\frac{1}{\left(-a-1\right)^2}}\)

Có: \(1+a+\left(-a-1\right)=1+a-1-a=0\)

=> \(\sqrt{\frac{1}{1^2}+\frac{1}{a^2}+\frac{1}{\left(-a-1\right)^2}}=\sqrt{\left(\frac{1}{1}+\frac{1}{a}+\frac{1}{-a-1}\right)^2}=\frac{1}{1}+\frac{1}{a}+\frac{1}{-a-1}\)

=>    \(A=1+\frac{1}{a}-\frac{1}{a+1}=1+\frac{1}{a\left(a+1\right)}\)

VẬY     \(A=1+\frac{1}{a\left(a+1\right)}\)

11 tháng 8 2020

\(A=\sqrt{1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\)

\(=\sqrt{\left(\frac{1}{a}-\frac{1}{a+1}\right)^2+\frac{2}{a\left(a+1\right)}+1}\)

\(=\sqrt{\left[\frac{1}{a\left(a+1\right)}+1\right]^2}=\left|\frac{1}{a}-\frac{1}{a+1}+1\right|\)

23 tháng 4 2021

\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

23 tháng 4 2021

a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

9 tháng 7 2019

cho mình chỉnh chút câu b nhé mình ghi nhầm

A = \(\sqrt{6}>1\)

B < 1 => A > B