Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)
b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)
=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)
\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)
a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}-2}{2}\)
c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))
\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}-3}{3}\)
b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
Vậy cái điều kiện \(x\ne\sqrt{3}\)người ta cho chi bạn. Bạn nên để ý là cái điều kiện người ta cho là nhằm cho cái đó nó xác định chớ không cho tào lao đâu. x # 0 cũng là vì lý do đó nên mình chắc cái đề trong sách in sai
Với điều kiện kèm theo thì mình chắc rằng cái đề phải là x - \(\sqrt{27}\) chứ không thể lad x - 27 được. Bạn xem lại đề nhé
Lời giải:
ĐK: $x\geq 0$
a)
Khi \(x=\frac{\sqrt{7-4\sqrt{3}}}{2}=\frac{\sqrt{4+3-2\sqrt{4.3}}}{2}=\frac{\sqrt{(2-\sqrt{3})^2}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{(\sqrt{3}-1)^2}{2^2}\)
\(\Rightarrow \sqrt{x}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow \left\{\begin{matrix} 4\sqrt{x}=2(\sqrt{3}-1)\\ (\sqrt{x}+1)^2=\frac{4+2\sqrt{3}}{4}\end{matrix}\right.\) \(\Rightarrow P=-20+12\sqrt{3}\)
b)
\(P=\frac{4\sqrt{x}}{(\sqrt{x}+1)^2}=\frac{1}{2}\)\(\Leftrightarrow 8\sqrt{x}=x+1+2\sqrt{x}\)
\(\Leftrightarrow x-6\sqrt{x}+1=0\)
\(\Leftrightarrow (\sqrt{x}-3)^2=8\Rightarrow \sqrt{x}-3=\pm 2\sqrt{2}\)
\(\Rightarrow \sqrt{x}=3-2\sqrt{2}\Rightarrow x=17\pm 12\sqrt{2}\)
(đều thỏa mãn)
Lời giải:
ĐK: $x\geq 0$
a)
Khi \(x=\frac{\sqrt{7-4\sqrt{3}}}{2}=\frac{\sqrt{4+3-2\sqrt{4.3}}}{2}=\frac{\sqrt{(2-\sqrt{3})^2}}{2}=\frac{2-\sqrt{3}}{2}=\frac{4-2\sqrt{3}}{4}=\frac{(\sqrt{3}-1)^2}{2^2}\)
\(\Rightarrow \sqrt{x}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow \left\{\begin{matrix} 4\sqrt{x}=2(\sqrt{3}-1)\\ (\sqrt{x}+1)^2=\frac{4+2\sqrt{3}}{4}\end{matrix}\right.\) \(\Rightarrow P=-20+12\sqrt{3}\)
b)
\(P=\frac{4\sqrt{x}}{(\sqrt{x}+1)^2}=\frac{1}{2}\)\(\Leftrightarrow 8\sqrt{x}=x+1+2\sqrt{x}\)
\(\Leftrightarrow x-6\sqrt{x}+1=0\)
\(\Leftrightarrow (\sqrt{x}-3)^2=8\Rightarrow \sqrt{x}-3=\pm 2\sqrt{2}\)
\(\Rightarrow \sqrt{x}=3-2\sqrt{2}\Rightarrow x=17\pm 12\sqrt{2}\)
(đều thỏa mãn)