K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P=\dfrac{x^3-x^2+2x-2+x^2-2x+1}{x\left(x-1\right)}\)

\(=\dfrac{x^3-1}{x\left(x-1\right)}=\dfrac{x^2+x+1}{x}\)

b: x^2+x+1=(x+1/2)^2+3/4>=3/4>0

x>0

=>P>0

9 tháng 12 2018

\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)

\(A=\frac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3-3x}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{x^3-x^2+x-3-3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(A=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{x^3+1}\)

a: \(=\dfrac{x^3-x^2+x+3\left(x^2-1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+4+3x^2-3}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x^2+x+1}{x^2-x+1}\)

b: \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

=>A>0 với mọi x<>-1

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

1)

Ta có: \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{(x-2)(x+2)}+\frac{x-2}{(x-2)(x+2)}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+1}{x^2-4}=\frac{x+2+x-2+x^2+1}{x^2-4}\)

\(=\frac{x^2+2x+1}{x^2-4}=\frac{(x+1)^2}{x^2-4}\)

2) Với mọi \(-2< x< 2\Rightarrow (x-2)(x+2)< 0\Leftrightarrow x^2-4< 0\)

\((x+1)^2>0\forall x\neq 1; -2< x< 2\) nên \(\frac{(x+1)^2}{x^2-4}< 0\)

Tức là biểu thức A luôn nhận giá trị âm. Ta có đpcm.

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

24 tháng 12 2017

Hỏi đáp ToánHỏi đáp Toán

24 tháng 6 2017

Phân thức đại số

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)

14 tháng 7 2017

1) \(\left(x-3\right)\left(x-5\right)+44\)

\(=x^2-3x-5x+15+44\)

\(=x^2-8x+59\)

\(=x^2-2.x.4+4^2+43\)

\(=\left(x-4\right)^2+43\ge43>0\)

\(\rightarrowĐPCM.\)

2) \(x^2+y^2-8x+4y+31\)

\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)

\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)

\(\rightarrowĐPCM.\)

3)\(16x^2+6x+25\)

\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)

\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)

\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)

\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)

-> ĐPCM.

4) Tương tự câu 3)

5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)

\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)

\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)

-> ĐPCM.

6) Tương tự câu 5)

7) 8) 9) Tương tự câu 3).

15 tháng 7 2017

Giải rõ giúp mình với

Câu 1: 

a: ĐKXĐ: \(x\notin\left\{0;1;\dfrac{1}{2}\right\}\)

\(B=\dfrac{x^2+x}{x^2+x+1}-\dfrac{2x^3+x^2-x-2x^3+2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)

\(=\dfrac{x\left(x+1\right)}{x^2+x+1}-\dfrac{-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)

\(=\dfrac{x\left(x+1\right)}{x^2+x+1}+\dfrac{2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{-x\left(x-1\right)}{2x-1}\)

\(=\dfrac{x\left(x+1\right)}{x^2+x+1}+\dfrac{-x}{x^2+x+1}=\dfrac{x^2}{x^2+x+1}\)

b: Để \(B=\dfrac{4}{3}\) thì \(\dfrac{x^2}{x^2+x+1}=\dfrac{4}{3}\)

\(\Leftrightarrow4x^2+4x+4-3x^2=0\)

=>x=-2(nhận)

23 tháng 12 2018

\(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\)

\(A=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)

\(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}\)

Ta có: -2 < x < 2

=> x thuộc { -1 ; 0 ; 1 }

Mà x khác -1 nên x = 0 ; x = 1

Với x = 0 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(0+1\right)^2}{\left(0-2\right)\left(0+2\right)}=\dfrac{1}{-4}\)

=> A có giá trị âm

Với x = 1 thì \(A=\dfrac{\left(x+1\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(1+1\right)^2}{\left(1-2\right)\left(1+2\right)}=\dfrac{4}{-3}\)

=> A có giá trị âm

Vậy với -2 < x < 2 ; x khác -1 thì A có giá trị âm