Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(3x-4\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-4-2x-2\right)\left(3x-4+2x+2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\) ( thỏa mãn )
Vậy : ...
1/ \(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow9x^2-24x+16-4\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow9x^2-24x+16-4x^2-8x-4=0\)
\(\Leftrightarrow5x^2-32x+12=0\)
\(\Leftrightarrow5x^2-30x-2x+12=0\)
\(\Leftrightarrow5x\left(x-6\right)-2\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\5x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{6;\frac{2}{5}\right\}\)
2/ \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+2x^2+x-2x^2-4x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)^2\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x+1=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-1\right\}\)
\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)
\(=3x^4-4x^3+2x^4-4x^3+14x^2\)
\(=5x^4-8x^3+14x^2\)
3x4 - 4x3 + 2x(x3 - 2x2 + 7x )
= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2
= 5x4 - 8x3 + 14x2
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
a: \(=49x^2-64-10\left(4x^2+12x+9\right)+5x\left(9x^2-12x+4\right)+4x\left(x^2-10x+25\right)\)
\(=49x^2-64-40x^2-120x-90+45x^3-60x^2+20x+4x^3-40x^2+100x\)
\(=49x^3-91x^2-154\)
b: \(=27x^3+189x^2+441x+343-125x^3+y^3+x^3+6x^2y+12xy^2+8y^3\)
\(=-97x^3+189x^2+441x+6x^2y+12xy^2+9y^3+343\)
a: \(\Leftrightarrow3x^3-2x^2+6x^2-4x-3x+2+a-2⋮3x-2\)
=>a-2=0
=>a=2
b: \(\Leftrightarrow3x^3-2x^2+6x^2-4x-3x+2+3⋮3x-2\)
=>\(3x-2\in\left\{1;-1;3;-3\right\}\)
mà x là số nguyên
nên x=1
c: \(\Leftrightarrow x^2+x-3x-3-a+3⋮x+1\)
=>3-a=0
=>a=3
\(N=\left(3x^2-7x\right)\left(x-2\right)\)
\(N=3x^3-6x^2-7x^2+14x\)
\(N=3x^3-13x^2+14x\)
\(A=x^2-4x-x\left(x-4\right)-15\)
\(=x^2-4x-x^2+4x-15=-15\) => đpcm
\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)
\(=5x^3-5x^2-5x^3+5x^2-13=-13\) => đpcm
\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)
\(=-3x^2+15x+3x^2-12x-3x+7=7\) => đpcm
\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)
\(=7x^2-35x+21-7x^2+35x-14=7\) => đpcm
\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)
\(=4x^3-20x-4x^3+20x+20=20\) => đpcm
\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) => đpcm
N = ( 3x2 - 7x ) ( x - 2 )
N = 3x2 . x - 3x2 . 2 - 7x . x - 7x . ( -2 )
N = 3x3 - 6x2 - 7x2 + 14x
N = 3x3 - 13x2 + 14x
N = ( 3x2 - 7x ) ( x - 2 )
= 3x2 . x - 3x2 . 2 - 7x . x - 7x . ( -2 )
= 3x3 - 6x2 - 7x2 + 14x
= 3x3 - 13x2 + 14x
P/s tham khảo nha