Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biên độ dao động tổng hợp thỏa mãn: \(\left|A_1-A_2\right|\le A\le\left|A_1+A_2\right|\)
\(\Rightarrow\) A = 5 (cm) thỏa mãn hệ thức
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Chọn đáp án C.
Biên độ dao động tổng hợp của một vật
A = A 1 2 + A 2 2 + 2 A 1 A 2 cos Δ φ
⇒ Δ φ = 2 k π Δ φ = ( 2 k + 1 ) π ⇒ A = A max = A 1 + A 2 A = A min = A 1 − A 2
A min ≤ A ≤ A max ⇔ 12 − 8 ≤ A ≤ 12 + 8 ⇔ 4 ≤ A ≤ 20
=> A = 5(cm) thỏa mãn
Đáp án D
Phương pháp: Sử dụng điều kiện về biên độ của dao động tổng hợp trong bài toán tổng hợp hai dao động điều hòa
Cách giải :
Ta có
Do đó biên độ không thể nhận giá trị 32 cm
Đáp án B
HD: Biên độ dao động tổng hợp có giá trị nằm trong khoảng:
Ta có $x_1=x_{12}-x_2=x_{12}-(x_{23}-(x_{13}-x_1)$
$\Rightarrow$ $2x_1=x_{12}-x_{23}+x_{13}$. Bấm máy tính ta được
${x_1}={3\sqrt{6}}\cos\left({\pi t + \dfrac{\pi}{12}} \right)$
${x_3}={3\sqrt{2}}\cos\left({\pi t + \dfrac{7\pi}{12}} \right)$
Suy ra hai dao động vuông pha, như vậy khi x1 đạt giá trị cực đại thì x3 bằng 0.
cách bấm máy để ra phương trình dao động làm như thế nào vậy ạ