Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chu kì dao động: \(T=2\pi/\omega=\pi/10(s)\)
Trong thời gian \(\pi/10\)s đầu tiên bằng đúng 1 chu kì, nên quãng đường đi được là 4A = 4.6=24 cm.
Biên độ: \(A^2=x^2+\dfrac{v^2}{\omega^2}=(2\sqrt 3)^2+\dfrac{(20\sqrt 2)^2}{(10\sqrt 2)^2}\)
\(\Rightarrow A = 4cm\)
\(\cos\varphi = \dfrac{x}{A}=\dfrac{2\sqrt 3}{4}\)
\(v>0\Rightarrow \varphi < 0\)
Suy ra: \(\varphi=-\dfrac{\pi}{6}(rad)\)
Vậy: \(x=4\cos(10\sqrt 2 t-\dfrac{\pi}{6})(cm)\)
ω=4π=>T=0,5s
\(\dfrac{t}{T}=\dfrac{5,75}{0,5}=11+0,5\)
tdư=0,5T=>α=π
khi t=0 có x0=2\(\sqrt{3}\) cm
Vẽ đường tròn thấy trong khoảng thời gian 0,5T vật không đi qua vị trí x=2 cm theo chiều dương lần nào cả
=> số lần vật đi qua vị trí x=2cm theo chiều dương trong 5,75s là 11 lần
Vật qua x = 2cm là qua M1 và M2
Vật quay 1 vòng (1 chu kì) qua x = 2 là 2 lần.
Qua lần thứ 2009 thì quay 1004 vòng rồi đi từ M0 đến M1
Từ hình vẽ ta có góc quét :
\(\Delta\varphi=1004.2\pi+\frac{\pi}{6}\Rightarrow t=\frac{\Delta\varphi}{\omega}=502+\frac{1}{24}=\frac{12049}{24}s\)
Đáp án B