Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường sinh l:
\(l=\dfrac{S_{xq}}{\pi r}=\dfrac{65\pi}{5\pi}=13\) (cm)
Chiều cao hình nón:
\(h=\sqrt{l^2-r^2}=\sqrt{13^2-5^2}=12\) (cm)
Thể tích hình nón:
\(V=\dfrac{1}{3}\pi r^2h=\dfrac{1}{3}\pi.5^2.12=100\pi\) cm3
a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)
b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)
\(1.Sxq=\pi Rl=\pi3.5=15\pi cm^2\)
\(Stp=Sxq+\pi R ^2=15\pi+9\pi=24\pi cm^2\)
\(2.V=\dfrac{1}{3}\pi R^2.\sqrt{l^2-R^2}=\dfrac{1}{3}\pi.3^2.\sqrt{5^2-3^2}=12\pi cm^3\)
\(S_{\text{mặt đáy}}:\pi.3^2=9\pi\left(cm^2\right)\)
\(S_{\text{xung quanh}}:\pi rl=\pi.3.l=24\pi-9\pi=15\pi\Rightarrow l=5\left(cm^2\right)\)
\(\text{Chiều cao khối chóp}:h=\sqrt{l^2-r^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(V:\frac{1}{3}\pi r^2h=\frac{1}{3}\pi.3^2.4=12\pi\left(cm^3\right)\)
Diện tích mặt đáy là : \(\pi.3^2=9\pi(m^2)\)
Diện tích xung quanh là : \(S_{xq}=\pi rl=\pi.3.l=24\pi-9\pi=15\pi=>l=5(m)\)
Chiều cao của khối chóp là \(h=\sqrt{l^2-r^2}=\sqrt{5^2-3^2}=4(m)\)
Thể tích của hình nón là : \(V=\frac{1}{3}\pi r^2h=\frac{1}{3}\pi.3^2.4=12\pi(m^3)\)
Tính được V = 100 c m 3