Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(T_0< T_1\) , nên E hướng xuống.
Lại có: \(T_1=2T_0\Leftrightarrow2\pi\sqrt{\frac{l}{g-a}}=2.2\pi\sqrt{\frac{l}{g}}\Rightarrow4a=3g\Leftrightarrow a=\frac{3}{4}g\)\(=7,5\left(m/s^2\right)\)
\(a=\frac{qE}{m}\Rightarrow E=\frac{ma}{q}=3,75.10^3\left(V/m\right)\)
Đáp án D
Con lắc đặt trong điện trg đều có phương ngang →\(\overrightarrow{P}\perp\overrightarrow{E}\) → g''=\(\sqrt{g^2+a^2}\) Ta có : F=qE=ma → a=2 m/s2 → g''=10 m/s2
T= 2π\(\sqrt{\frac{\Delta l}{g^{''}}}\) và khi buông nhẹ cho dao động thì ::A=\(\Delta l\) .Đế bài chép thiếu \(l\)rồi. lắp số vô là ok
Chọn B
+ Khi con lắc ở VTCB mới O’ dây treo hợp với phương
thẳng đứng góc α0:
=> Lực căng cực đại của dây trong quá trình dao động là:
T = mg’(3 – 2cosα0 ) = 0,1.10,002(3 – 2cos(0,2012rad)) = 1,0406 N = 1,04N.
Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)
Theo giả thiết thì hai bản tụ đặt thẳng đứng trái dấu, nên ta có hình sau:
+ + + + + - - - - - α E P F T
Góc lệch ở VTCB: \(\tan\alpha=\frac{F}{P}=\frac{qE}{mg}=\frac{qU}{mgd}=\frac{10^{-5}.400}{0,01.10.0,1}=0,4\)
\(\Rightarrow\alpha=21,8^0\)
câu này lập ti số \(\dfrac{T'}{T}\)=\(\sqrt{\dfrac{g}{g-\dfrac{qE}{m}}}\) => T'=2,14s