K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

15 tháng 7 2016

Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.

Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)

Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)

\(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)

+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)

\(\Rightarrow A = 5cm\)

+ Ban đầu ta có \(x_0=3cm\)\(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)

\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)

\(\Rightarrow \varphi \approx0,3\pi(rad)\)

Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)

10 tháng 5 2017

13 tháng 3 2018

11 tháng 3 2019

13 tháng 5 2017

29 tháng 8 2016

Khoảng thời gian giữa 2 lần liên tiếp động ăng bằng thế năng là T/4

\(\Rightarrow \dfrac{T}{4}=\dfrac{\pi}{40}\)

\(\Rightarrow T = \dfrac{\pi}{10}\)

\(\Rightarrow \omega=\dfrac{2\pi}{T}=20(rad/s)\)

Biên độ dao động: \(A=\dfrac{v_{max}}{\omega}=\dfrac{100}{20}=5(cm)\)

Ban đầu, vật qua VTCB theo chiều dương trục toạ độ \(\Rightarrow \varphi=-\dfrac{\pi}{2}\)

Vậy PT dao động là: \(x=5\cos(20.t-\dfrac{\pi}{2})(cm)\)

2 tháng 6 2016

Khi vật I qua VTCB thì nó có vận tốc là: \(v=\omega.A\)

Khi thả nhẹ vật II lên trên vật I thì động lượng được bảo toàn

\(\Rightarrow M.v = (M+m)v'\Rightarrow v'=\dfrac{3}{4}v\)

Mà \(v'=\omega'.A'\)

\(\dfrac{v'}{v}=\dfrac{\omega'}{\omega}.\dfrac{A'}{A}=\sqrt{\dfrac{M}{\dfrac{4}{3}M}}.\dfrac{A'}{A}=\dfrac{3}{4}\)

\(\Rightarrow \dfrac{A'}{A}=\dfrac{\sqrt 3}{2}\)

\(\Rightarrow A'=5\sqrt 3cm\)

Chọn A.

5 tháng 6 2016

Vận tốc của M khi qua VTCB: v = ωA = 10.5 = 50cm/s
Vận tốc của hai vật sau khi m dính vào M: v’ = Mv/(M+v)= 40cm/s
Cơ năng của hệ khi m dính vào M: W = 1/2KA'2= 1/2(m+M)v'2
A’ = 2căn5

Câu 2: Một quả cầu có khối lượng m= 2kg treo ở một đầu một sợi dây có khối lượng không đáng kể và không co dãn. Bỏ qua ma sát và sức cản. Lấy g= 10m/s2 . a) Kéo quả cầu khỏi vị trí cân bằng một góc  m rồi thả ra ( vận tốc ban đầu bằng không). Thiết lập biểu thức lực căng dây của dây treo khi quả cầu ở vị trí lệch một góc  so với vị trí cân bằng. Tìm vị trí của quả...
Đọc tiếp

Câu 2: Một quả cầu có khối lượng m= 2kg treo ở một đầu một sợi dây có khối lượng không đáng kể và không co dãn. Bỏ qua ma sát và sức cản. Lấy g= 10m/s2 . a) Kéo quả cầu khỏi vị trí cân bằng một góc  m rồi thả ra ( vận tốc ban đầu bằng không). Thiết lập biểu thức lực căng dây của dây treo khi quả cầu ở vị trí lệch một góc  so với vị trí cân bằng. Tìm vị trí của quả cầu trên quĩ đạo để lực căng đạt cực đại. Tinh độ lớn của lực căng cực đại nếu góc  m =600 . b) Phải kéo quả cầu khỏi vị trí cân bằng một góc bằng bao nhiêu để khi thả cho dao động, lực căng cực đại gấp 3 lần trọng lượng của quả cầu. c) Thay sợi dây treo quả cầu bằng một lò xo có trọng lượng không đáng kể. Độ cứng của lò xo là k= 500N/m, chiều dài ban đầu l0=0,6m. Lò xo có thể dao động trong mặt phẳng thẳng đứng xung quanh điểm treo O. Kéo quả cầu khỏi vị trí cân bằng một góc β = 900 rồi thả ra. Lúc bắt đầu thả, lò xo ở trạng thái không bị nén dãn. Xác định độ dãn của lò xo khi quả cầu đến vị trí cân bằng. 

0
23 tháng 4 2017

Đáp án C

+ Tần số góc của dao động

.

+ Gốc thời gian được chọn là lúc con lắc đi qua vị trí cân bằng lần thứ 2 =>qua vị trí cân bằng theo chiều dương