Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Xếp 12 học sinh thành 1 dãy có: 12! Cách sắp xếp.
Chọn 2 bạn nữ và sắp xếp 2 bạn đứng đầu hàng và cuối hàng có: 2 . C 7 2 cách.
Sắp xếp 10 bạn còn lại có: 10! Cách.
Do đó có: 2 C 7 2 . 10 ! cách sắp xếp 12 học sinh sao cho người đứng đầu hàng và cuối hàng đều là nữ.
Xác suất cần tìm là: P = 2 . C 7 2 . 10 ! 12 ! = 7 22
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
Tỉ số của học sinh giỏi và khá đối với cả lớp là:
1 - 7/15 = 8/15 (số học sinh cả lớp)
Tỉ số của số học sinh giỏi và số học sinh còn lại là:
1 - 5/8 = 3/8 (số học sinh còn lại)
Tỉ số của học sinh giỏi và học sinh cả lớp là:
3/8 x 8/15 = 1/5 (số học sinh cả lớp)
Số học sinh của cả lớp là:
9 : 1/5 = 45 (học sinh)
Số học sinh trung bình là:
45 x 7/15 = 21 (học sinh)
Số học sinh khá là:
45 - 21 - 9 = 15 (học sinh)
Đáp số: ...........
P = 7 + 72 + 73 + ... + 72016
=> P = 7( 1 + 7 + 72 + 73) + ... + 72013( 1 + 7 + 72 + 73)
=> P = 7( 1 + 7 + 49 + 343) + ... + 72013( 1 + 7 + 49 + 343)
=> P = 7 . 400 + ... + 72013 . 400
=> P = (7 + ... + 72013) . 400
=> P = (7 + ... + 72013) . 202 (đpcm)
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m