K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$|x-23.4|=23.4$

$\Rightarrow x-23.4=23.4$ hoặc $x-23.4=-23.4$

$\Rightarrow x=23.4+23.4$ hoặc $x=23.4-23.4$

$\Rightarrow x=184$ hoặc $x=0$

29 tháng 12 2023

\(\left|x-23.4\right|=23.4\\ \\ \\\Rightarrow\left|x-92\right|=92\\ \\ \\ \Rightarrow\left[{}\begin{matrix}x-92=92\\-x+92=92\end{matrix}\right. \Rightarrow\left[{}\begin{matrix}x=92+92=19=184\\-x=92-92=0\Rightarrow x=0\end{matrix}\right.\)

Vậy x=184; x=0

15 tháng 3 2018

Mấy câu này dễ mà,động não lên chứ bạn:v

Link______________Link

h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

\(\ge\left|x-1+3-x\right|=2\)

\(\Rightarrow x+1>2\Leftrightarrow x>1\)

Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)

Câu b xét khoảng tương tự với cái link t đưa thôi

hơi bức xúc rồi đó

tau chỉ muốn kiểm tra lại thôi

22 tháng 8 2017
bài làm
A=1.2.3+2.3.4+3.4.5+...+98.99.100
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+98.99.100.4
4A=1.2.3.(4-0)+2.3.4.(5-1)+...+98.99.100.(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-...-97.98.99.100+98.99.100.101
4A=98.99.100.101
4A=97990200
A=979902004979902004
A=24497550
22 tháng 8 2017

a, Vào câu hỏi tương tự nhé

b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)

=> x+3+x+1=3x

=> 2x+4=3x

=>x=4

c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)

=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)

=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)

=> \(2005\ge\left|x+101\right|+2004\)

=> \(\left|x+101\right|\le1\)

=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)

d, tương tự b

14 tháng 8 2019

a) \(\left(x-5\right)\left(x+8\right)-\left(x+4\right)\left(x-1\right)\)

\(=\left(x^2+3x-40\right)-\left(x^2+3x-4\right)\)

\(=x^2+3x-40-x^2-3x+4\)

\(=-36\)

14 tháng 8 2019

b)\(x^4\left(x^2-1\right)\left(x^2+1\right)\)

\(=x^4\left(x^4-1\right)\)

\(=x^8-x^4\)

21 tháng 6 2017

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| \(\ge\) |x+5+x+17|

A = |-x-5|+|x+17| \(\ge\) |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 \(\le\) x \(\le\) -5

Vậy MinA=12 khi - 17 \(\le\) x \(\le\) -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| \(\ge\) (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| \(\ge\) 42

Vậy MinB = 42 khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+13=0\\x+50\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-13\\x\ge-50\end{matrix}\right.\) \(\Rightarrow x=-13\)

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

\(\ge\) |x+5| + |x+2| + |7-x| + |8-x|

\(\ge\) |x+5+7-x| + |x+2+8-x|

\(\ge\) |12| + |10|

\(\ge\) 12 + 10 \(\ge\) 22

Vậy MinC = 22 khi và chỉ khi :

-5 \(\le\) x \(\le\) 8 và -2 \(\le\) x \(\le\) 7 \(\Leftrightarrow\) -2 \(\le\) x \(\le\) 7

d) D = |x+3|+|x−2|+|x−5|

Giải

D = |x+3|+|x−2|+|x−5|

\(\ge\) ( |x+3|+|5-x| ) + |x-2| \(\ge\) | x+3+5-x | + | x-2 | \(\ge\) | 8 | + | x-2 | \(\ge\) 8 + | x-2 | \(\ge\) 8 Vậy MinD = 8 khi và chỉ khi: \(\left\{{}\begin{matrix}x+3\ge0\\x-2=0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x=2\\x\le5\end{matrix}\right.\) \(\Rightarrow x=2\)

Tìm GTNN của biểu thức:

a) A = |x+5|+|x+17|

Giải

Ta có : A = |x+5|+|x+17| ≥≥|x+5+x+17|

A = |-x-5|+|x+17| |-x-5+x+17| = | -12 | = 12

Dấu bằng xảy ra khi - 17 x -5

Vậy MinA=12 khi - 17 x -5

b) B = |x+8|+|x+13|+|x+50|

Giải

B = |x+8|+|x+13|+|x+50| (| x+8|+|-50-x |)+|x+13|

= (| x+8-50-x |)+|x+13|

= |-42| + |x+13|

= 42 + |x+13| ≥≥42

Vậy MinB = 42 khi và chỉ khi:

x+8 ≥ 0 ⇒x ≥ −8

x+13 = 0 => x = −13 .Vậy x=-13

x+50 ≥ 0 => x ≥ −50

c) C = |x+5|+|x+2|+|x−7|+|x−8|

Giải

C = |x+5|+|x+2|+|x−7|+|x−8|

=> |x+5| + |x+2| + |7-x| + |8-x|

|x+5+7-x| + |x+2+8-x| = |12| + |10| =12 + 10 = 22

Vậy MinC = 22 khi và chỉ khi :

-5 x 8 và -2 x 7 -2 x 7