Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=10x-5x^2-11x-22\)
\(\Leftrightarrow-x^2+2x-1=-5x^2-x-22\)
\(\Leftrightarrow4x^2+3x+21=0\)
Ta có \(\Delta=3^2-4.4.21< 0\)
Vậy pt vô nghiệm
1) \(x\left(2^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=x-5x^3-x^2+x\)
\(=2x-5x^3-x^2\)
2) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=\left(6x^2+23x-55\right)-\left(6x^2+23x+21\right)\)
\(=-76\)
Làm lại câu 1
\(x\left(2^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=x-5x^3-x^2+x^2\)
\(=x-5x^3\)
\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-1\right)\left(x+1\right).\)
\(=x^3-3x^2+3x-1-\left(x^3-2^3\right)+3\left(x^2-1\right)\)
\(=x^3-3x^2+3x-1-x^3+8+3x^2-3\)
\(=3x+4\)
\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)^3-\left(x^3+8\right)+3\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)^3-x^3-8+3\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1-x\right)+3x\left(x-1\right)\left(x-1-x\right)-8+3\left(x-1\right)\left(x+1\right)\)(1)
\(=-1-3x\left(x-1\right)-8+3\left(x-1\right)\left(x+1\right)\)
\(=3\left(x-1\right)\left(-x+x+1\right)-9=3\left(x-1\right)-9=3\left(x-4\right)=3x-12\)
(1) là hằng đẳng thức \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)\)
(x - 1)^3 - x(x + 1)^2 = 5x(2 - x) - 11(x + 2)
<=> -5x^2 + 2x - 1 = -5x2 - x - 22
<=> 2x - 1 = -5x2 - x - 22 + 5x2
<=> 2x - 1 = -x - 22
<=> 2x - 1 + x = -22
<=> 3x - 1 = -22
<=> 3x = -22 + 1
<=> 3x = -21
<=> x = -7
Vậy: phương trình có nghiệm duy nhất là: S = {-7}
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
i) (x - 1)(5x + 3) = (3x - 8)(x - 1)
<=> 5x2 + 3x - 5x - 3 = 3x2 - 3x - 8x + 8
<=> 5x2 - 2x - 3 = 3x2 - 11x + 8
<=> 5x2 - 2x - 3 - 3x2 + 11x - 8 = 0
<=> 2x2 + 9x - 11 = 0
<=> 2x2 + 11x - 2x - 11 = 0
<=> x(2x + 11) - (2x + 11) = 0
<=> (x - 1)(2x + 11) = 0
<=> x - 1 = 0 hoặc 2x + 11 = 0
<=> x = 0 hoặc x = -11/2
m) 2x(x - 1) = x2 - 1
<=> 2x2 - 2x = x2 - 1
<=> 2x2 - 2x - x2 + 1 = 0
<=> x2 - 2x + 1 = 0
<=> (x - 1)2 = 0
<=> x - 1 = 0
<=> x = 1
n) (2 - 3x)(x + 11) = (3x - 2)(2 - 5x)
<=> 2x + 22 - 3x2 - 33x = 6x - 15x2 - 4 + 10x
<=> -31x + 22 - 3x2 = 16x - 15x2 - 4
<=> 31x - 22 + 3x2 + 16x - 15x2 - 4 = 0
<=> 47x - 18 - 12x2 = 0
<=> -12x2 + 47x - 26 = 0
<=> 12x2 - 47x + 26 = 0
<=> 12x2 - 8x - 39x + 26 = 0
<=> 4x(3x - 2) - 13(3x - 2) = 0
<=> (4x - 13)(3x - 2) = 0
<=> 4x - 13 = 0 hoặc 3x - 2 = 0
<=> x = 13/4 hoặc x = 2/3
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
Bài 6
\(\left(a-b\right)^2=a^2-2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab\)
Bài 5 :
\(a,16x^2-\left(4x-5\right)^2=15\)
\(16x^2-16x^2+40x-25-15=0\)
\(40x-40=0\)
\(40x=40\)
\(x=1\)
\(b,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(4x^2+12x+9-4x^2+4=49\)
\(12x=36\)
\(x=3\)
\(c,\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(4x^2-1+1-4x+4x^2=18\)
\(8x^2-4x-18=0\)
\(2\left(4x^2-2x-9\right)=0\)
\(x=\frac{1-\sqrt{37}}{4}\)
\(d,2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(12x=4\)
\(x=\frac{1}{3}\)
\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
\(< =>\left(x-1+x\right)\left(x-1\right)^2=10x-5x^2-11x-22\)
\(< =>-x^2+x-1-10x+5x^2+11x+22=0\)
\(< =>4x^2+3x+21=0\)
\(< =>\left(2x\right)^2+2.2x.\frac{3}{4}+\left(\frac{3}{4}\right)^2+20\frac{9}{25}=0\)
\(< =>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}=0\)
Do \(\left(2x+\frac{3}{4}\right)^2\ge0=>\left(2x+\frac{3}{4}\right)^2+20\frac{9}{25}\ge20\frac{9}{25}>0\)
Vậy phương trình vô nghiệm
Dòng 2 là (x-1-x) nha @@