Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{36\left(x-2\right)}{32-16x}=\frac{36\left(x-2\right)}{16\left(2-x\right)}=-\frac{36\left(2-x\right)}{16\left(2-x\right)}=-\frac{36}{16}=-\frac{9}{4}\)
b) \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}=\frac{3x-6}{x^3+2x^2+4x}\)
c) \(\frac{7x^2+14x+7}{3x^2+3x}=\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}=\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\frac{7\left(x+1\right)}{3x}=\frac{7x+7}{3x}\)
d) \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-9\right)\left(x^2-1\right)}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)
e) \(\cdot\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}=\frac{x^2+2x+1}{x^2+1}\)
a) 7x - 35 = 0
<=> 7x = 0 + 35
<=> 7x = 35
<=> x = 5
b) 4x - x - 18 = 0
<=> 3x - 18 = 0
<=> 3x = 0 + 18
<=> 3x = 18
<=> x = 5
c) x - 6 = 8 - x
<=> x - 6 + x = 8
<=> 2x - 6 = 8
<=> 2x = 8 + 6
<=> 2x = 14
<=> x = 7
d) 48 - 5x = 39 - 2x
<=> 48 - 5x + 2x = 39
<=> 48 - 3x = 39
<=> -3x = 39 - 48
<=> -3x = -9
<=> x = 3
a) \(\left(x^2-8\right)^2+36\) = \(x^4-16x^2+64+36\)
= \(\left(x^4+20x^2+100\right)-36x^2\)
= \(\left(x^2+10\right)^2-\left(6x\right)^2\)
= \(\left(x^2+10-6x\right)\left(x^2+6x+10\right)\)
b) Bài này có 2 cách; Tui sẽ làm 1 cách còn cách còn lại tui sẽ lm ở câu c
Ta có: \(x^8+x^4+1\) = \(x^8+2x^4+1-x^4\)
= \(\left(x^4+1\right)^2-x^4\)
= \(\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\)
= \(\left(x^4-x^2+1\right)\left[\left(x^4+2x^2+1\right)-x^2\right]\)
=\(\left(x^4-x^2+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)\)
A= -x2 -8x+5
A= -(x2 + 8x -5)
A= -(x2+2x4+42-42-5)
A= -(x+4)2+21.Vì -(x+4)2\(\le\)0 =>A\(\le\)21
GTLN A=21 <=>x+4=0 =>x= -4
Bài 3:
x=y+1 nên x-y=1
\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
=x^8-y^8
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài