Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(4\left(1-cos^23x\right)+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}-4=0\)
\(\Leftrightarrow-4cos^23x+2\left(\sqrt{3}+1\right)cos3x-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=-\frac{1}{2}\\cos3x=\frac{\sqrt{3}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{2\pi}{9}+\frac{k2\pi}{3}\\x=\pm\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
2.
\(\Leftrightarrow\frac{\sqrt{3}-1}{2\sqrt{2}}sinx-\frac{\sqrt{3}+1}{2\sqrt{2}}cosx=-\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=-cos\left(\frac{5\pi}{12}\right)\)
\(\Leftrightarrow sin\left(x-\frac{5\pi}{12}\right)=sin\left(-\frac{\pi}{12}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{5\pi}{12}=-\frac{\pi}{12}+k2\pi\\x-\frac{5\pi}{12}=\frac{13\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
3.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^2x\)
\(3tan^2x+8tanx+8\sqrt{3}-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-\sqrt{3}\\tanx=\frac{3\sqrt{3}-8}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=arctan\left(\frac{3\sqrt{3}-8}{3}\right)+k2\pi\end{matrix}\right.\)
4.
\(\Leftrightarrow sin\left(x-120^0\right)=-cos\left(2x\right)=sin\left(2x-90^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-90^0=x-120^0+k360^0\\2x-90^0=300^0-x+k360^0\end{matrix}\right.\)
\(\Leftrightarrow...\)
5.
\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x=\frac{1}{2}-\frac{1}{2}cos6x\)
\(\Leftrightarrow cos6x=cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=2x+k2\pi\\6x=-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
1/ \(pt\Leftrightarrow\left(3cos^2x-sin^2x\right)\left(cos^2x-sin^2x\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)\left(\dfrac{1}{2}\left(1+cos2x\right)-\dfrac{1}{2}\left(1-cos2x\right)\right)=0\)
\(\Leftrightarrow\left(2cos2x+1\right)cos2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)
2/ \(pt\Leftrightarrow\left(sinx-1\right)\left(sin^2x+sinx+6\right)=0\)
\(\Leftrightarrow sinx=1\)
3/ \(pt\Leftrightarrow\dfrac{1-cos2x}{2}-4sin2x+\dfrac{7}{2}\left(1+cos2x\right)=0\)
\(\Leftrightarrow3cos2x-4sin2x=-4\)
\(\Leftrightarrow5\left(\dfrac{3}{5}cos2x-\dfrac{4}{5}sin2x\right)=-4\)
\(\Leftrightarrow cos\left(2x+arccos\dfrac{3}{5}\right)=-\dfrac{4}{5}\)
4,5 giải tương tự câu 3
16.
\(y'=\frac{\left(cos2x\right)'}{2\sqrt{cos2x}}=\frac{-2sin2x}{2\sqrt{cos2x}}=-\frac{sin2x}{\sqrt{cos2x}}\)
17.
\(y'=4x^3-\frac{1}{x^2}-\frac{1}{2\sqrt{x}}\)
18.
\(y'=3x^2-2x\)
\(y'\left(-2\right)=16;y\left(-2\right)=-12\)
Pttt: \(y=16\left(x+2\right)-12\Leftrightarrow y=16x+20\)
19.
\(y'=-\frac{1}{x^2}=-x^{-2}\)
\(y''=2x^{-3}=\frac{2}{x^3}\)
20.
\(\left(cotx\right)'=-\frac{1}{sin^2x}\)
21.
\(y'=1+\frac{4}{x^2}=\frac{x^2+4}{x^2}\)
22.
\(lim\left(3^n\right)=+\infty\)
11.
\(\lim\limits_{x\rightarrow1^+}\frac{-2x+1}{x-1}=\frac{-1}{0}=-\infty\)
12.
\(y=cotx\Rightarrow y'=-\frac{1}{sin^2x}\)
13.
\(y'=2020\left(x^3-2x^2\right)^{2019}.\left(x^3-2x^2\right)'=2020\left(x^3-2x^2\right)^{2019}\left(3x^2-4x\right)\)
14.
\(y'=\frac{\left(4x^2+3x+1\right)'}{2\sqrt{4x^2+3x+1}}=\frac{8x+3}{2\sqrt{4x^2+3x+1}}\)
15.
\(y'=4\left(x-5\right)^3\)
`x^2 = 4x^2 - 9`
`<=> 9 = 4x^2 - x^2`
`<=> 9 = 3x^2`
`<=> x^2 = 3.`
`<=> x = +-sqrt 3`.