Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta thấy: \({10^2} = \sqrt {{6^2} + {8^2}} \Rightarrow {F^2} = \sqrt {F_1^2 + F_2^2} \)
Suy ra \({F_1} \bot {F_2}\)
2.
a)
Biểu diễn các lực kéo của mỗi tàu và hợp lực tác dụng vào tàu chở hàng:
b)
Độ lớn của hợp lực là:
\(F = \sqrt {F_1^2 + F_2^2 + 2{F_1}{F_2}\cos \left( {{F_1},{F_2}} \right)} \)
\( \Leftrightarrow F = \sqrt {{{8000}^2} + {{8000}^2} + 2.8000.8000.\cos {{30}^0}} \)
\( \Leftrightarrow F = 15455\left( N \right)\)
c)
Hợp lực có:
- Chiều: hướng về phía trước
- Phương: hợp với \(\overrightarrow {{F_1}} \) góc \({15^0}\)
d) Nếu góc giữa hai dây cáp bằng \({90^0}\) thì hợp lực có:
- Phương: xiên
- Chiều hướng sang trái hoặc phải.
- Độ lớn: \(F = \sqrt {F_1^2 + F_2^2} \)
a) Bỏ qua lực cản của không khí => Cơ năng được bảo toàn.
Chọn mốc thế năng ở vị trí cân bằng (tại O)
WA= WtA + WđA = WtA (Do vA = 0)
= m.g.hA = 0,2.10. (CO - CH)
= 2.(l-l.cosα) = 2.(1 - 1.cos60o)
= 1 (J)
Khi đó, WO = 1 = WA(J)
<=> WđO = 1 (Do WtO = 0)
<=> \(\dfrac{1}{2}\).m.vO2 = 1
<=> vO = \(\sqrt{10}\)(m/s)
b) Gọi αo là vị trí vật giao động trong đoạn từ 0o đến 60o
Ta có: \(\overrightarrow{F_{hl}}\) = m.\(\overrightarrow{a}\)
<=> \(\overrightarrow{T}+\overrightarrow{P_1}\)= m\(\overrightarrow{a}\)
Chiếu lên chiều dương:
=> T - P1 = m.a (1)
<=> T = m.a + P.cosαo
<=> T = m.a + m.g.cosαo
* Lực căng dây lớn nhất:
Ta gọi D là 1 điểm bất kì trong khoảng từ 0o đến 60o. Ta gọi tại đó vật có góc lệch so với vị trí cân bằng là αo
+) Ta có: hD = l - l.cosαo ( tương tự như hA)
=> WC = WđD + WtD = WA = WtA
<=> \(\dfrac{1}{2}\).m.vD2 + m.g.hD = m.g.hA
<=> \(\dfrac{1}{2}\).m.vD2 + m.g.( l - l.cosαo) = m.g.(l-l.cosα)
Rút vD2 = 2.g.l.(cosαo - cosα)
+) Từ (1) => T - P.cosαo = m.\(\dfrac{v^2}{l}\)
<=> T = m.\(\dfrac{v^2}{l}\) + m.g.cosαo
= m.\(\dfrac{2.g.l.\left(\cos\alpha_o-\cos\alpha\right)}{l}\)+ m.g.cosαo
= m.2.g.(cosαo - cosα) + m.g.cosαo
= m.g.(2cosαo - 2cosα + cosαo)
= m.g.(3cosαo - 2cosα)
Ta có: cosα , m và g không đổi.
=> T max <=> cosα0 lớn nhất
<=> cosαo = 1
<=> αo = 0o
Vậy T max <=> Vật đi qua vị trí cân bằng.
Khi đó:
T max = m.g.(3 - 2cosα)
= 0,2.10.(3-2cos60o) = 4 (N)
60o T O A P h A H C
Bạn nhớ viết hoa đầu dòng nhé, và quy tắc bỏ dấu trong văn bản word:
Hướng dẫn:
Cơ năng ban đầu: W1 = mgh
Cơ năng khi chạm đất: W2 = 1/2 mv2
Bảo toàn cơ năng: \(W_1=W_2\Rightarrow v=\sqrt{2gh}\)
Fms=\(\mu\).N
N=\(P-sin\alpha.F=\)\(20-10\sqrt{2}\)N
\(\Rightarrow F_{ms}=\)\(4-2\sqrt{2}\)N
công của lực ma sát
\(A_{F_{ms}}=F_{ms}.s.cos180^0\)=\(-8+4\sqrt{2}\)J
Lực tác dụng lên vật m được biểu diễn trên hình vẽ.
Định luật II Niu-tơn cho:
Chọn hệ trục Oxy với chiều dương là chiều chuyển động theo phương Ox, chiếu phương trình (1) lên:
(Ox): Fcosα- fms= ma (2)
(Oy): N + Fsinα – P = 0 (3)
mà fms= μN (4)
(2), (3) và (4) => F cosα – μ(P- Fsinα ) = ma
=> Fcosα – μP + μFsinα = ma
F(cosα +μsinα) = ma +μmg
=> F =
a) khi a = 1,25 m/s2
Đáp án A.