Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504 940; 904 450; 954 950; 594 490 590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là : 540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là 540; 450;490
940; 950; 590 .
a, 6a43b chia hết cho 2 và 5 -> b=0
ta có 6a430 chia hết cho 3 -> (6 + a + 4 + 3 + 0) chia hết cho 3 -> 13 + a chia hết cho 3
-> a=2, a= 5, a= 8,
ta có 3 số: 62430, 65430, 68430
b, 6a43b chia hết cho 2 và 5 -> b=0
ta có 6a430 chia hết cho 9 -> ( 6+ a + 4+ 3 +0 ) chia hết cho 9 -> 13 + a chia hết cho 9
-> a = 5
ta có số: 65430
a) 450 ; 490 ; 540 ; 590 ; 940 ; 950 ; 504 ; 594 ; 904 ; 954
b) 504 ; 904 ; 540 ; 940
c) 450 ; 490 ; 540 ; 590 ; 940 ; 950
**** ủng hộ nha Bùi Phương Linh , cả mọi người nữa nhe !!!!!!!!!!!
y phải là 4 vì 4 chia 5 dư 4 và chia hết cho 2
ta có: 5+1+4= 10
vậy x=5
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
a, Các số chia hết cho 2 có tận cùng bằng 0 hoặc 4. Mặt khác mỗi số đều có các chữ số khác nhau, nên các số thiết lập được là
540; 504 940; 904 450; 954 950; 594 490 590
b, Ta có các số có 3 chữ số chia hết cho 4 được viết từ 4 chữ số đã cho là : 540; 504; 940; 904
c, Số chia hết cho 2 và 5 phải có tận cùng 0. Vậy các số cần tìm là 540; 450;490
940; 950; 590 .